
royalsocietypublishing.org/journal/rsos

Research

Cite this article: Hébert - Dufresne L, Kling MM,
Rosenblatt SF, Miller SN, Burnham PA, Landry
NW, Gotelli NJ, McGill BJ. 2025 Stochastic
diffusion using mean-field limits to approximate
master equations. R. Soc. Open Sci. 12: 250726.
https://doi.org/10.1098/rsos.250726

Received: 13 April 2025
Accepted: 12 August 2025

Subject Category:
Mathematics

Subject Areas:
ecology, computational biology, applied
mathematics

Keywords:
ecological diffusion, disease models,
spatiotemporal dynamics, metapopulations,
stochastic processes

Author for correspondence:
Laurent Hébert-Dufresne
e-mail: Laurent.Hebert-Dufresne@uvm.edu

Electronic supplementary material is avail-
able online at https://doi.org/10.6084/m9.
figshare.c.7987073.

Stochastic diffusion using
mean-field limits to
approximate
master equations
Laurent Hébert-Dufresne1,2,5, Matthew M. Kling3,4,
Samuel F. Rosenblatt1,2, Stephanie N. Miller6,7, P.
Alexander Burnham3, Nicholas W. Landry1,8, Nicholas J.
Gotelli3,4 and Brian J. McGill6,7

1Vermont Complex Systems Institute, 2Department of Computer Science, 3Department of
Biology, and 4Gund Institute for Environment, University of Vermont, Burlington, VT, USA
5Santa Fe Institute, Santa Fe, NM, USA
6Mitchell Center for Sustainability Solutions, University of Maine System, Orono, ME, USA
7School of Biology and Ecology, University of Maine, Orono, ME, USA
8Department of Biology, University of Virginia, Charlottesville, VA, USA

 

 

LH-D, 0000-0002-0008-3673

Stochastic diffusion is the noisy process throughwhich dynam‑
ics like epidemics, or agents like animal species, disperse over
a larger area. These processes are increasingly important to
better prepare for pandemics and as species ranges shift in re‑
sponse to climate change. Unfortunately, modelling is mostly
done with expensive computational simulations or inaccurate
deterministic tools that ignore the randomness of dispersal.We
introduce ‘mean‑FLAME’ models, tracking stochastic disper‑
sion using approximate master equations to follow the proba‑
bility distribution over all possible states of an area of interest,
up to states active enough to be approximated using a mean‑
fieldmodel. In the limit wherewe track all states, this approach
is locally exact, and in the other limit collapses to traditional
deterministic models. In predator–prey systems, we show that
tracking a handful of states around key absorbing states is suf‑
ficient to accurately model extinction. In disease models, we
show that classicmean‑field approaches underestimate the het‑
erogeneity of epidemics. And in nonlinear dispersal models,
we show that deterministic tools fail to capture the speed of
spatial diffusion. These effects are all important for marginal
areas that are close to unsuitable for diffusion, like the edge of
a species range or epidemics in small populations.

© 2025 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
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1. Introduction
Self‑organizing structures (e.g. populations, metapopulations, communities) and their complex dynam‑
ics (e.g. epidemics, species diffusion, culture) involve a combination of deterministic trends and stochas‑
tic effects. Althoughmost ecological modelling efforts have focused on the deterministic component, the
stochastic component can be critical when considering the movement of entities through time and space
[1]. Models of spread or diffusion, in particular, often rely on approximations that are built from deter‑
ministic assumptions [2,3], like supposing well‑mixed populations [4] or by simply tracking the average
state of a system [5,6]. These approximation methods work well if the system is large enough or if the
probabilities of rare events are low enough. Still, they often do a poor job representing non‑deterministic
processes near the limits of systems (e.g. small populations, populations near the edge of their geographic
range).Here,we present a novelmethod that can better approximate the state of ecological systems under
near‑limit conditions.

First, consider the spread of an emergent disease under differently structured populations. In a large,
well‑connected population, a virulent disease could spread quickly, moving among dense population
centres and eventually among sparser rural areas once transmission has exceeded a high enough rate
[7]. Alternatively, in a network of small, isolated populations (e.g. bark beetles moving among stands of
their host trees), transmission to new areas occurs more slowly, if at all, and relies on rare events. Models
that ignore stochasticity will capture the dynamics of the large connected population but fail to capture
the sparse stochastic transmission chains critical to the small isolated populations. With close to half of
the global population living in rural areas, this is a large omission for many state‑of‑the‑art epidemic
models and the ecology of emerging diseases [8].

Second, under climate change, organisms are expected to track suitable conditions by shifting their
geographic ranges [9]. For the range of a species to shift, individuals need suitable conditions to effec‑
tively survive and reproduce, and need to reach locationswith those conditions. In cases where distances
are short and there are no physical barriers between current occurrences and future suitable locations,
modelling these range shifts using deterministic mean‑field averages may be appropriate. However, in
cases where long‑distance dispersal is required to reach suitable conditions or get beyond barriers (e.g.
mountain ranges, rivers, highways), stochastic events of dispersal are more important. Rare and random
dispersal events have shaped species ranges as we know them today [10,11]. Capturing rare and random
dispersal is therefore critical to understanding how ecosystems will shift in response to climate change
[12,13].

To better model the stochastic components like those critical to species range shifts and the spread
of emergent diseases, we propose using a new approach based on the master equation framework. The
objective of this study is to explore the potential of using a coupled systemofmean‑field andmaster equa‑
tions to efficiently capture the discrete and stochastic nature of fluctuations in spreading and dispersion
dynamics. This hybrid approach aims to maintain the precision of master equations around important
absorbing states while leveraging the fact that the complexity of mean‑field models does not scale with
population size, unlike classicmaster equation or simulation frameworks.We do so by introducingmean‑
field limits to approximate master equations (or mean‑FLAME). The methods we propose can help improve
the computational and mathematical modelling of many applications, some of which we tackle here:

— population dynamics,
— consumer–resource or predator–prey model,
— metapopulation models,
— epidemic dynamics,
— age‑ and stage‑structured models,
— species range shifts,
— competition or cooperation among species,
— evolutionary dynamics,
— trophic interactions,
— and invasive species dynamics.

and others left for future work:

— competition or cooperation among species,
— evolutionary dynamics,
— trophic interactions,
— and invasive species dynamics.
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The rest of the paper is structured as follows. We first introduce the concept of master equations and
mean‑field limitswithout space, using a simple birth–death process for a single population and a coupled
two‑population system, in §2. We then extend this method to a two‑dimensional process using Lotka–
Volterra predator–prey dynamics, again without space, in §3. We then apply the method to spatially
embedded multidimensional examples in §§4 and 5, using the above scenarios of metapopulation epi‑
demic dynamics and species dispersal, respectively.We conclude by sharing some details of our software
implementations of mean‑FLAME and suggesting improvements for future work.

2. Modelling approach with a birth–death process example
In this section, we use a stochastic birth–death process for a single population to describe three compo‑
nents of our proposed methodology. First, we present the traditional master equation framework which
tracks the probability distribution of a system over all of its possible states by accounting for transition
probability between discrete states. Next, we use a mean‑field limit to approximate the master equation
far from any absorbing state where dynamics die (for population size far above zero in this birth–death
example). Then we show how approximating correlations across sub‑systems or locations can simplify
the processing of the master equation for coupled or spatially embedded systems.

For this example, we are interested in the number n of individuals found in a population (system) at
time t. In this example, births and deaths are stochastic events that follow a Poisson process with births
occurring at a rate 𝜇n and deaths at rate 𝜈n2. With this formulation, n∗ = 0 is an absorbing state that
systems cannot leave (i.e., extinction) and there exists a meta‑stable state at n∗∗ = 𝜇∕𝜈.

In a classic mean‑field description, we would track the expected number of individuals n̄ at time t.
This would traditionally be done with the following ordinary differential equation:

d
dt
n̄(t) = 𝜇n̄(t) − 𝜈n̄(t)2 . (2.1)

With this equation, the absorbing state n∗ = 0 is always unstable if 𝜇 > 0 such that any systemwith initial
conditions n̄(0)> 0 will end up in the stable state n∗∗ = 𝜇∕𝜈. However, consider an actual stochastic sim‑
ulation of a system with n= 1 active individual; there is a probability 𝜈∕(𝜇 + 𝜈) that the system falls into
the absorbing state instead ofmoving to n= 2.Mean‑field approximations do not capture these stochastic
extinction events. In the ecological literature, stochastic outcomes like this are referred to as demographic
or environmental stochasticity and can be important drivers of population change [14]. In fact, all popu‑
lations could eventually fall into the absorbing state, and the rate at which these extinction events occur
will depend on how close n∗∗ = 𝜇∕𝜈 is to zero. We wish to capture these different paths to extinction.

2.1. Master equation
Master equations are systems of equations that track the occupation probability (or occupation number)
for every possible state of a system by calculating the exact transition rates between states [15]. Consider
Py⃗(t), the occupation probability of state y⃗ at time t. The state y⃗ in this example is a simple count of indi‑
viduals but it could include anydescription of the state of the system (e.g. location, epidemiological status
or age of individuals, local policies), as long as y⃗ is sufficient to exactly specify the transition rates 𝜔(y⃗, z⃗)
from state y⃗ to other states z⃗ and vice versa. We can then define a general master equation for Py⃗(t) as,

d
dt
Py⃗(t) =

∑

z⃗
𝜔(z⃗, y⃗)Pz⃗(t) −

∑

z⃗
𝜔(y⃗, z⃗)Py⃗(t), (2.2)

where positive terms correspond to probability flowing into state y⃗, from z⃗ and negative terms to proba‑
bility flowing from y⃗ to other states. Often, the sums in equation (2.2) involve only a few terms as the tran‑
sitionmatrix across all states can be quite sparse. The complexity of the approach is instead related to the
number of states available to the system, since the approach is only exact if all states are tracked explicitly.

In general, the master equation describing a given stochastic process can be written by answering a
simple set of questions.

(1) What is the set of discrete states available to the system? The answer to this questions fixes the
number of variables and differential equations needed.

(2) What are the possible transitions between states? The answer to this question dictates how many
terms with other states z⃗ should appear in a given differential equation.
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Figure 1. A master equation with mean-field limit for a simple birth–death process.

(3) At what rates do these transitions occur? These rates fix the transition factors 𝜔 in the master
equation.

To write the master equation of this birth–death process, we follow our simple recipe. The system con‑
sists of a discrete number of active individuals nwhich can take any value from 0 to infinity. The system
can go from state n to n + 1 through reproduction or to state n − 1 when an individual dies. The repro‑
duction transition from n to n + 1 occurs at rate𝜔(n,n + 1) = 𝜇n and the death transition to n − 1 occurs at
rate 𝜔(n,n − 1) = 𝜈n2 for all possible values of n; all other transitions are impossible. The corresponding
master equation is therefore

d
dt
Pn(t) = (n + 1)2𝜈Pn+1(t) + (n − 1)𝜇Pn−1(t) − (n𝜇 + n2𝜈)Pn(t), for n= 0, 1, 2,… . (2.3)

2.2. Master equation with mean-field limit
One possible issue with the master equation framework is that we need to track all possible states for the
system.What if the population of active individuals goes to infinity?We can track thousands of equations
without issue, but systems of several millions or billions of equations are computationally expensive.

Therefore, we introduce a mean‑field limit in our master equation. We collapse all states with intense
activity as a mean‑field quantity I(t). Technically, we define intense activity as a system far enough from
any absorbing state. In this birth–death example, this would be any population with size greater than
some condition, n≥ nc, far from extinction. For the approximation to be accurate, nc just needs to not be
too close to zero. We then track both the occupation PI(t)(t) of that mean‑field quantity and as well as
its value I(t). In our birth–death example, I(t) represents the expected population size for populations
with at least nc individuals, while PI(t)(t) represents the probability that a given population has at least
nc individuals at time t. This approximation is illustrated in figure 1.

To include this mean‑field limit in our master equation framework, we need to track the transitions
in and out of that mean‑field limit by assuming some distribution around its average state I(t) for the
fraction PI(t)(t) of systems therein. Indeed, based on whatever distribution we assume around the aver‑
age state, we can calculate the probability that a system in the mean‑field limit is actually right on the
edge of the limit at n= nc. Given that probability, we calculate the rate at which a systemmight leave the
mean‑field limit back to an explicitly tracked state at n= nc − 1 in the master equation.

Let us write the system of equations for the birth–death process using the scheme shown in figure 1
where we use a mean‑field I(t) to describe systems with nc = 5 or more active individuals (which is an ar‑
bitrary choice for the mean‑field condition nc). We need four types of equations: general master equation
states, the last master equation state at nc − 1 which is coupled to the mean‑field limit, the occupation
probability or occupation number of themean‑field limit, as well as the position of themean‑field limit it‑
self. In the same order, these four types of equations can bewritten as follows for the birth–death process:

d
dt
Pn(t) = (n + 1)2𝜈Pn+1(t) + (n − 1)𝜇Pn−1(t) − (n𝜇 + n2𝜈)Pn(t), for n= 0, 1,… ,nc − 2 (2.4)

d
dt
Pnc−1(t) = n2c𝜈𝜌 [nc, I(t)]PI(t)(t) + (nc − 2)𝜇Pnc−2(t) − ((nc − 1)𝜇 + (nc − 1)2𝜈)Pnc−1(t) (2.5)

d
dt
PI(t)(t) = (nc − 1)𝜇P(nc−1)(t) − n2c𝜈𝜌 [nc, I(t)]PI(t)(t) (2.6)

d
dt
I(t) = 𝜇I(t) − 𝜈I(t)2 . (2.7)

The equations for all occupation numbers follow the same logic as before where every transition from
state y to z (or arrows in figure 1) corresponds to a negative term for the state y and an equal positive
term for the state z.
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Figure 2. A birth–death process where the number of individuals n in a system grows by one at rate𝜇n and decreases by one at rate
𝜈n2. We set 𝜇∕𝜈 = 1∕0.05 = 20 and integrate the system up to a time t= 400. The system is described with three approaches: a
mean-field description with a single equation (occupation number of 1) leading to a steady-state at 20; an exact master equation with
100 equations, and our hybrid mean-FLAME model with 8 master equation state coupled to a mean-field limit. Markers representing
the master equation states of the hybrid model are connected by a dashed line, but markers for the approximated states based on the
mean-field limit are not. Note that the underlying process does not produce a Poisson distribution, such that our hybrid model is imper-
fect and could be improved by a better choice of 𝜌[nc, I(t)]. Even then, the hybrid model succeeds at our main objective as it captures
stochastic extinctions relatively well.

Importantly, the transition out of the mean‑field limit and back to the master equation involves a cou‑
pling function 𝜌[nc, I(t)], where we need to approximate the distribution of states around the expected
I(t)mean‑field limit. In general, we recommend using a truncated Poisson distribution. It is not the right
distribution in this particular birth–death example, because of the quadratic death term, but still works
relatively well. Thus, 𝜌[nc, I(t)] is the probability that a system drawn from a Poisson distribution with
mean I(t) and support [nc,∞] is found at exactly nc, on the edge of that distribution and susceptible to
leaving the mean‑field limit.

Note that equation (2.7) governing the position of the mean‑field limit I(t) is exactly the same as the
standard mean‑field description used in equation (2.1). Therefore, if we define the mean‑field limit as a
system with nc = 0 or more active individuals, we fall back on a standard mean‑field model. Conversely,
as we push that mean‑field limit to infinity, i.e. nc →∞, we recover an exact master equation description.
Between these limits, we approximate the true distribution of states, capturing stochastic extinctions
around the absorbing state while maintaining a much smaller system of equations than in a true master
equation framework.

We compare the predictions of the different models introduced so far in figure 2.

2.3. Coupled subsystems with approximate master equations with mean-field limits
Consider now that there are two weakly coupled subsystems (e.g. neighbouring populations) undergo‑
ing the same birth–death process. Active individuals in one subsystem give birth to new entities that
migrate to the other subsystem at a rate 𝜆.

In a master equation framework, we would then want to track the overall state of the system using
y⃗= [n1,n2] capturing the number of active individuals in both subsystems. It would therefore be nat‑
ural to extend this idea to our master equation with mean‑field limit. However, the complexity of this
approach obviously grows exponentially with the number of subsystems.
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We rely on a simpler approximation to describe coupled subsystems, called an approximate master

equation [16–18]. The idea is to describe every system separately with its ownmaster equation, and cou‑
ple them using a mean‑field quantity. Using this idea on master equations with mean‑field limit, we can
write the following system of equations for the two subsystems birth–death process, with subsystems
labelled i and j ∈ [1, 2],

d
dt
P(i)n (t) = (n + 1)2𝜈P(i)n+1(t) +

[
(n − 1)𝜇 + 𝜃j

]
P(i)n−1(t) − (n𝜇 + 𝜃j + n2𝜈)P(i)n (t) (2.8)

d
dt
P(i)nc−1(t) = n2c𝜈𝜌

[
nc, I(i)(t)

]
P(i)I(i)(t)(t) + ((nc − 2)𝜇 + 𝜃j)P

(i)
nc−2

(t) − ((nc − 1)𝜇 + 𝜃j + (nc − 1)2𝜈)P(i)nc−1(t)

(2.9)

d
dt
P(i)I(i)(t)(t) = ((nc − 1)𝜇 + 𝜃j)P

(i)
nc−1

(t) − n2c𝜈𝜌
[
nc, I(i)(t)

]
P(i)I(i)(t)(t) (2.10)

d
dt
I(i)(t) = 𝜇I(i)(t) + 𝜃j − 𝜈I(i)(t)2 , (2.11)

where we introduced an approximate mean‑field coupling representing the expected number of births
in i coming from j,

𝜃j = 𝜆
⎡
⎢
⎣

nc−1∑

k=0
kP(j)k (t) + I(t)P(j)

I(j)(t)
(t)
⎤
⎥
⎦
, (2.12)

which is the expectedmigration rate based on the average state of the neighbour subsystem. The average
state is calculated as a sum over the number k of individuals in the subsystem j, plus its own mean‑field
limit I(j)(t). Inwhat follows, we often drop the subsystem label onmean‑field limits to avoid complicating
the notation (i.e. I(j)(t)would simply be I(t)).

The mean‑field coupling could be improved by including known correlations using a clever mo‑
ment closure in equation (2.12), such as network effects or other correlations [16,17]. Yet, taking a simple
average is a good first‑order approximation for most processes.

Importantly, this approach does not exactly capture joint extinctions where both subsystems have 0
active individuals. For example, the state where subsystem i goes extinct, P(i)0 , is no longer an absorbing
state due to the average coupling 𝜃j although it does capture the vanishing internal dynamics of system
i. The joint absorbing state can still be reached, but is not exactly described since we ignore correlations
between the subsystems such that 𝜃i or 𝜃j do not go to zero. This is the cost of using amean‑field coupling
across subsystems for the resulting model to scale linearly with the number of subsystems rather than
exponentially.

We compare how well mean‑FLAME captures coupled stochastic birth‑death processes in figure 3.

3. Two-dimensional generalization with a Lotka–Volterra example
Species interactions, modelled with Lotka–Volterra systems of equations, are one of the most ubiquitous
examples of mean‑field models in ecology. They capture a simplified version of predator–prey or com‑
petition dynamics. But in many ways, the approximations made are extreme. Consider the following
predator–prey dynamics in a population of F(t) prey fish and S(t) sharks at time t. Every prey repro‑
duces logistically at rate 𝜇 [KF − F(t)] in an environment with carrying capacity KF (which only affects
the dynamics of the prey fish, and not that of the sharks). Predators can come into contact and eat any
prey at a given rate 𝛽. Predation allows the predator to have enough energy to reproduce (at rate 𝛽F) and
die at a background rate, 𝜈. Assuming that contacts between predators and prey are well mixed, we can
write the following mean‑field system:

d
dt
F= 𝜇F [KF − F(t)] − 𝛽F(t)S(t)

d
dt
S= 𝛽F(t)S(t) − 𝜈S(t)

(3.1)

These classic Lotka–Volterra equations yield some interesting insights about cycles in the population
of predators and prey. However, populations in these cycles can go arbitrarily close to zero, which are
absorbing states; the model does not allow extinctions because it ignores the fact that the dynamics are
stochastic and that animals are discrete quantities [19].
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Figure3. Two coupled birth–death processes where the number of individualsni in system i∈ {1, 2}grows by one at rate𝜇ni + 𝜆nj≠i
and decreases by one at rate 𝜈n2

i . We set 𝜇= 1, 𝜈 = 0.1 and 𝜆= 0.004 and integrate the system up to a time t= 100. We then
compare an exact master equation with 50 × 50 = 2500 equations and a mean-FLAME model consisting of two systems of 8 master
equation states plus 2 states describing their mean-field limit for a total of 20 equations. Markers representing the master equation
states of the hybrid model are connected by a dashed line, but markers for the approximated states based on the mean-field limit are
not. Note that almost 15% of systems would be extinct by time t= 100 if not for the coupling mechanism, such that 𝜆= 0.004 is far
from a trivially weak coupling and still well captured by the approximate master equations.

In this section, we focus on a single system (no spatial aspects or coupling between subsystems) to
demonstrate how to generalize the internal dynamics of mean‑FLAME models to multi‑state or mul‑
tidimensional systems with more than one degree of freedom (or variable of interest). We do so for
pedagogical reasons. The complexity of mean‑FLAME models grows linearly when adding subsystems
but grows exponentially when adding internal degrees of freedom to each subsystem.

3.1. Two-dimensional master equation with mean-field limit
We now generalize our mean‑FLAME approach to multidimensional systems, which gets conceptually
quite complicated. Readers can refer to the state and transition schema shown in figure 4. Assuming the
number of fish is a vertical dimension and the number of sharks is a horizontal dimension, we can ex‑
plain the different transitions as follows. Vertical state transitions correspond to prey reproduction while
transitions to the left correspond to predator death. The act of predation, in the general master equation
states, corresponds to the diagonal transitions that simultaneously decreases the number of prey by one
and increases the number of predator by one. However, in the mean‑field limit, this transition is diago‑
nal only if the number of prey is such that the systems lies at the edge of the mean‑field approximation
and predation takes the prey system out of its limit. Otherwise, it is a horizontal move to the right that
increases the number of predators while also leaving the prey system in the mean‑field limit of prey
numbers.

We now have to introduce many mean‑field limits for both prey and predator numbers given all pos‑
sible combinations of population sizes for prey and predator populations. There is a mean‑field quantity
for the number of prey given zero predators in the system, or one predator, or two predators, and so
on; likewise for mean‑field limits for the number of predators. Finally, there is a double mean‑field limit
where counts of both predator and prey are approximated by mean‑field quantities.

In two dimensions, we therefore have nine types of occupation numbers: (i) the general master equa‑
tion, (ii, iii) states that are next to one mean‑field limit but not the other, (iv) a single state that is next to
both mean‑field limits, (v, vi) mean‑field limit in one dimension but far from the limit in the other, (vii,
viii) mean‑field limit in one dimension and next to the other limit, and (ix) the double mean‑field regime.
This is without counting the mean‑field quantities that also need to be followed.
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Figure 4. The master equation with mean-field limits for Susceptible–Infectious–Recovered–Susceptible dynamics. The exact same
state and transition schema also applies to predator–prey dynamics, if we simply replace the I (infectious) quantities for F (fish) to rep-
resent prey numbers; and the R (recovered) quantities for S (sharks) to represent predator numbers. Note that in both processes, the rate
of the transition from (0, 0) to (1, 0) is actually zero if the system is closed such that (0, 0) is an absorbing state. Migration events can
destabilize this absorbing state and re-introduce the infection or the prey in the system.

First, the general master equation of a Lotka–Volterra predator–prey system can be written as

d
dt
PnF,nS (t) = − 𝜇nF(KF − nF)PnF,nS (t) − 𝜈nSPnF,nS (t) − 𝛽nFnSPnF,nS (t)

+ 𝜇(nF − 1)(K − nF + 1)PnF−1,nS (t) + 𝜈(nS + 1)PnF,nS+1(t)

+ 𝛽(nF + 1)(nS − 1)PnF+1,nS−1(t) .

(3.2)

For large numbers of prey and a small number of predators, the system is eventually coupled to a mean‑
field limit. If the limits start at nF = ncF and nS = ncS, we write the following close to the limit in nF but
with nS < ncS − 1:

d
dt
PncF−1,nS (t) = − 𝜇(ncF − 1)(KF − ncF + 1)PncF−1,nS (t) − 𝜈nSPncF−1,nS (t) − 𝛽(ncF − 1)nSPncF−1,nS (t)

+ 𝜇(ncF − 2)(KF − ncF + 2)PncF−2,nS (t) + 𝜈(nS + 1)PncF−1,nS+1(t)

+ 𝛽ncF(nS − 1)𝜌
[
ncF,FnS−1(t)

]
PncF,nS−1(t) .

(3.3)

A similar equation governs the occupation number of the corresponding mean‑field limit in the number
of prey:

d
dt
PncF,nS (t) = − 𝜈nSPncF,nS (t) − 𝛽FnS (t)nSPncF,nS (t)

+ 𝜇(ncF − 1)(KF − ncF + 1)PncF−1,nS (t) + 𝜈(nS + 1)PncF−1,nS+1(t)

+ 𝛽FnS−1(t)(nS − 1){1 − 𝜌
[
ncF,FnS−1(t)

]
}PncF,nS−1(t) .

(3.4)

Notice that some subtle quantities appear in these equations, such as the mean‑field quantity for prey,
FnS−1(t), which corresponds to the mean‑field expectation for the number of prey fish in a system with
nS − 1 sharks at time t. That quantity in the predation term as the mean‑field quantity itself mediates
the rate at which predation occurs in the mean‑field limits. The important distinction in structure with
previous equations is that predation only adds to this equation number if the system in which predation
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Figure 5. Stochastic dynamics of a Lotka–Volterra model with logistic growth, where the system starts with 12 prey and 8 predators,
then follows the dynamics described in the main text with 𝜇= 0.4, 𝜈 = 0.4, 𝛽 = 0.04 and a carrying capacity of KF = 20. The full
master equation system requires (KF + 1)2 = 441 equations but captures the stochasticity of the dynamics. Instead of a unique de-
terministic prediction for the population at a given time, the master equation tracks a joint distribution for the number of preys and
predators at a given time. Here, we show the conditional distribution over the predator population over time and compare it to the de-
terministic mean-field prediction. Over time, the average state tracked by the master equation goes to zero as the approach captures
stochastic extinction at the absorbing state where both populations are zero.

occurs does not leave the mean‑field limit (diagonal versus lateral move); hence the 1 − 𝜌 term. These
last equations are then a closed system once we write out the corresponding mean‑field quantities,

d
dt
FnS (t) = 𝜇FnS (t)

[
KF − FnS (t)

]
− 𝛽nSFnS (t) . (3.5)

which are typical mean‑field equations relating the change in expected number of prey FnS (t) for a sys‑
tem with carrying capacity KF, birth rate 𝜇, predation rate 𝛽 and a precise known number of predators
nS.

The same approach can be used to describe the mean‑field limits of the number of predators. The full
system of equations for this case study is presented in our electronic supplementary material, appendix
S1, along with all our other case studies.

3.2. Extinction probability
To illustrate the usefulness of the approach, we rely on the ability of the master equations to exactly
capture stochastic dynamics, and therefore extinctions, in a Lotka–Volterra system (see figure 5 for a
comparison of master equation and mean‑field equations). Here, we define extinction as a system with
no prey or predator left by time t, and the probability of that happening is captured by P0,0(t) in our ap‑
proach. We then investigate how mean‑field limits allow us to capture the dynamics of extinction with
fewer equations. The results of this case study are shown in figure 6. We use systems with n explicit
master equation states per species. With n= 0, we have a fully mean‑field description which is determin‑
istic and thus predicts no extinctions. Interestingly, a systemwith n= 1 actually overpredicts extinctions,
most likely because the joint‑Poisson approximation for the double mean‑field regime underestimates
correlations and overestimates the likelihood of having low numbers of both predator and prey. That
being said, the system gives near perfect predictions with n as low as three. In this particular case, com‑
pared to a full master equation framework, that is 20 times fewer equations in the mathematical model
without much loss of precision.
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Figure 6. The extinction probability for a Lotka–Volterra model where the system starts with one prey and one predator, then follows
the dynamics described in the main text with 𝜇= 0.005, 𝜈 = 𝛽 = 0.1 and a carrying capacity of KF = 20. The full master equation
system requires (KF + 1)2 = 441 equations. We then compare predictions for the extinction probability over time using master equa-
tions with mean-field limits and a variable number of master equation states n per species (i.e. we explicitly track states with fewer than
n individuals of a certain type). We fall back on the classic mean-field Lotka–Volterra model by using n= 0, and find that it of course
cannot predict extinction. However, we almost perfectly recover stochastic extinction starting at n= 3. At this point, the mean-FLAME
system consists of n × n= 9 master equation states and 2n + 1 = 7 mean-field limits. The schematic of that model can be found in
figure 4.

Figure7. Systems of equations from the mean-FLAME approach can be embedded in discrete space or on networks and coupled through
mean-field quantities (e.g. the 𝜃 terms from the main text) to capture the role of the spatial or network structure. Every location has
its own mean-FLAME system of equations (here represented as copies of the SIRS system from figure 4) and every directed arrow corre-
sponds to a unique mean-field coupling.

4. Metapopulation epidemic models
Having introduced all of our modelling techniques, we now turn our focus to the two spatially explicit
complex models described in the introduction (figure 7) . For the first example, we will show how our
proposed technique can be used to track the spread of an emergent pathogen through a heterogeneously
distributed metapopulation where most local communities are very sparsely populated.

4.1. Susceptible-Infectious-Recovered-Susceptible (SIRS)
In this example, we want to model an epidemic process where individuals can take one of three states:
susceptible (s), infected (i) or recovered (r). Individuals can cycle through all states and back based on a
general set of mechanisms referred to as the SIRS process [20]. Susceptible individuals become infected
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by contact with infected individuals at a infection rate 𝛽. Infected individuals recover and gain immu‑
nity at a recovery rate 𝛼. And recovered individuals lose their immunity and become susceptible again
according to awaning rate 𝛾. In general, the epidemic can be summarized through its reproduction num‑
ber R0 = 𝛽N∕𝛼, which represents the expected number of infections caused by a first infected case. An
epidemic would die out with R0 < 1, but grow exponentially when R0 > 1. We can then also define a herd
immunity threshold generally estimated as h= 1 − 1∕R0 = 1 − 𝛼∕𝛽N such that h is the fraction of the pop‑
ulation that needs to be immune for the reproduction number R0 = 𝛽N(1 − h)∕𝛼 of the infectious disease
to drop below one in a population with N(1 − h) susceptible individuals. If there are more susceptible
individuals, the section of the population of immune individuals is below the herd immunity thresh‑
old and can cause a supercritical epidemic (defined as R0 > 1) until the the herd immunity threshold is
reached.

Current epidemic models of this process that are amenable to simpler mathematical techniques work
best in large, densely populated areas (e.g. large population centres) with well‑mixed contact patterns
between individuals. However, in sparsely populated areas (e.g. rural areas) thesemethods are less effec‑
tive since the influence of small population numbers and stochastic fluctuations can have greater impact
and need to be considered more explicitly.

In fact, stochastic effects can have surprising impacts in small populationswhich are never considered
in models used for large, high density populations. For example, consider a stochastic epidemic process
that starts in a small local population of 50 individuals. Even with R0 > 1, transmission might sputter
out quickly [21] and die out as a small cluster of five cases, for example. The settlement is then left with
45 susceptible people, a 10% reduction in global susceptibility. Small populations can therefore easily
reach herd immunity without ever seeing supercritical outbreaks since even small outbreaks can build
immunity in a large fraction of the population. This can, in turn, affect how easily or quickly an epidemic
might be able to spread across a sparsely populated area.

In a population of size N, we need to know the number of individuals in at least two out of three
epidemiological states to know the complete state of the system. For example, if we know the numbers i
and r of infectious and recovered individuals, we know that we have s=N − i − r susceptible individuals
given that we have a closed population.We can therefore use a two‑dimensionalmean‑FLAME approach
to describe the system.

The approximate master equation for a single SIRS process without mean‑field limits is given by

d
dt
Pi,r(t) = − (𝛽i + 𝜃)(N − i − r)Pi,r(t) − 𝛼iPi,r(t) − 𝛾rPi,r(t)

+ (𝛽(i − 1) + 𝜃)(N − i − r + 1)Pi−1,r(t) + 𝛼(i + 1)Pi+1,r−1(t) + 𝛾(r + 1)Pi,r+1(t),
(4.1)

where 𝜃 is again the mean‑field coupling estimate for one local population to other populations of the
metapopulation. We then introduce two‑dimensional mean‑field limits for both the i and r dimensions
to simplify the description of large epidemics in large populations. We can denote these Ir(t) (or Ri(t)) for
mean‑field numbers of infectious (or recovered) individuals in populations with exactly r recovered (or
i infectious) individuals; and PIr(t),r(t) (or Pi,Ri(t)(t)) represent the occupation probabilities of these states.
For populations in the double mean‑field limits, we track IR(t)(t) and RI(t)(t). The schema of the model is
presented in figure 4, and the resulting system of equations is again written in electronic supplementary
material, appendix S1.

To account for spatially distributed metapopulations of potentially infected individuals, we embed n
by n such systems in space where every local population is given a spatial position (x, y), a set of states as
in figure 4, and a connectivity kernel to other local populations j∈𝒩(x,y) which represents neighbouring
populations. The set of all neighbourhoods𝒩(x,y) could be any arbitrary metapopulation network. Over
these coupled metapopulations, we can calculate the expected coupling 𝜃(x,y) specific to the (x, y) local
population as

𝜃(x,y) = 𝜆𝛽
∑

j∈𝒩(x,y)

{
∑

i,r
iP(j)i,r (t) +

∑

r
Ir(t)P

(j)
Ir(t),r

(t) + IR(t)(t)P
(j)
IR(t),RI(t)

} . (4.2)

This mean‑field quantity is again a basic coupling term with a 𝜆 factor (akin to a migration rate). This
factor multiplies a sum over all neighbours j of the (x, y) local population where we calculate their ex‑
pected number of infected individuals by summing over the three types of states: generalmaster equation
(first sum in braces), infectious mean‑field with exact recovered state (second sum in braces) and dou‑
ble mean‑field state (final term in braces). To clarify the notation of the second sum and last term, recall
that P(j)Ir(t),r(t) and P(j)IR(t),RI(t)

represent the probability of finding population j in a state in the mean‑field
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Figure 8. Distribution of cases per population in an SIRS metapopulation model. We use a finite system of populations at specific (x, y)
positions with x and y∈ [0, 50] and with the local populations equal to N(x,y) =

⌈
10 + 100(cos x∕5)2(sin

√
y∕2)2

⌉
. Populations

are fully connected internally, and to their direct neighbours at populations (x + 1, y), (x − 1, y), (x, y + 1) and (x, y − 1). We use
the SIRS process with 𝛽 = 0.025, 𝛼 = 1, 𝛾 = 0.01 and 𝜆= 0.1 with initial conditions of one infectious cases in the 25 populations
with x< 5 and y< 5. We evaluate the distribution of cases by time t= 9 for two specific populations a certain number of steps away
from the nearest initial case. The mean-FLAME model is integrated using 10 exact states for both infectious and recovered individuals,
across all 50 by 50 locations this results in a total of 3 57 500 equations. The schematic of the system can be found in figure 4. The mean-
field model uses 7500 equations. A complete approximate master equation model would take up to max(N(x,y))2 per location, about 30
million equations. We compare to the distribution obtained from 10 000 simulations of the same process with an exact algorithm [22].

limit of infectious individuals and, respectively, exactly r recovered individuals or also in the mean‑field
limit of recovered individuals RI(t). Therefore, Ir(t) and IR(t) represent the expected number of infectious
individuals for a system in a mean‑field limit with either exactly r recovered individuals or in the mean‑
field limit of recovered individuals (represented by a capital R). Likewise, RI(t) represent the expected
number of recovered individuals in this double mean‑field regime.

Note that this mean‑field coupling does not depend on the state of the (x, y) local populations, which
makes calculations easier but means that we ignore all correlations induced by the dynamics. That be‑
ing said, a future version of the model could include known correlations in this coupling, since if we
know that the population in (x, y) is in a state with low or high infectious counts, then neighbouring
populations are likely to be in a similar state.

4.2. Spread of epidemics in heterogeneous spatially distributed populations
We evaluated howwell amean‑FLAMEmodel captured the stochastic diffusion of an SIRS epidemic pro‑
cess through ametapopulation system by comparing it to a classic mean‑field description.We quantified
the temporal patterns of stochatistic diffusion by looking at the time to introduction of the epidemic in
specific local populations. The results of this case study are shown in figure 8.

As expected, a classic mean‑field description overestimates the homogeneity of potential disease
spread. We obtain this mean‑field description by tracking the expected number of infected and recov‑
ered individuals for each local population in themetapopulation system, and then by assuming a Poisson
distribution around that average. Doing so creates two big issues. First, the mean‑field approach over‑
estimates how likely it is for a given population to have had a first infected individual. In other words,
even if the expected number of infected in a given local population is less than one, internal dynamics
drive the expected number of infections to increase when it should not. Second, the mean‑field approach
assumes that the number of internal contacts between susceptible and infectious individuals is given by
the product of the expected numbers of susceptible and infectious individuals, ignoring potential correla‑
tions between these two numbers. This slows down the spreading dynamics for systems in the tail of the
distribution of active cases. If the number of active cases is higher than average, the number of recovered
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cases might be lower than average since some cases are taking longer to recover, leading to a higher to‑
tal number of contacts between susceptible and infected. However, mean‑FLAME does not suffer from
this same issue. This allows the mean‑FLAME model to produce more heterogeneous distributions of
potential cases per population than classic mean‑field models (see figure 8).

Of note, a full approximate master equation would have 12 321 equations (population size squared)
per local population to capture the full range of potential number of infectious and recovered cases. A
real master equation framework would essentially be impossible, with a total number of equations scal‑
ing exponentially with the number of populations. Yet, the mean‑FLAME model used in figure 8 runs
more efficiently by using only 142 equations per population by approximating high numbers with a
mean‑field limit.

5. Species dispersal model
For our final example,we approximated the range shift of a tree in response to a slowly shifting landscape
of suitable environments driven by climate change. Specifically, we model a tree species that moves by
seed dispersal over a discrete space (x, y) where every grid cell in that space has local conditions that
specifies the cell’s local carrying capacity K(x, y, t) for the tree species at time t.

5.1. Handling of complex life cycles
We increased the realism of our model by considering a four‑stage life cycle for the tree species: (i) seeds
(s), (ii) seedlings or small greens (g), (iii) saplings or young trees (y), and (iv) adult trees (a). Each stage
dies at a rate, 𝜈x, and transitions into the next stage of the cycle at rate 𝜇x, where all rates are stage depen‑
dent. For instance, adult trees produce seeds at a fast rate of 𝜇a while young trees transition into adults
at a slower rate equal to 𝜇y times the square root of the number of young trees times the difference be‑
tween the carrying capacity and the current population. This transition from young to adult tree stages
captures the non‑linear growth expected when increasing biomass leads to an increase in competition
for resources among individuals [23]. The inclusion of nonlinear terms in a model increases the potential
error of using deterministic mean‑field models. Since the population of trees at any stage of the life cycle
is unconstrained, this model has four degrees of freedom for each spatial cell.

In general, the complexity of mean‑FLAMEmodels grows exponentially with the degrees of freedom
for each spatial cell because of the underlying master equation structure. However, instead of system‑
atically moving to master equation models of higher dimensionality, we can also use purely mean‑field
descriptions with no explicit master equation states for degrees of freedom that are systematically far
from absorbing states. For example, when modelling a tree species, the number of seeds S(t) might not
need to be explicitly tracked as it tends to be high and is therefore not as sensitive to fluctuations near zero.
This allows us to focus on stages of the life cycles which are population bottlenecks. In this example, the
numbers of young trees Y(t) and adult trees A(t) are more important to track explicitly as they are fewer
in numbers, have more influence and drive the numbers of seeds and seedlings at lower stages of the life
cycles. We therefore track Y(t) and A(t) with master equations and mean‑field limits, and these quanti‑
ties will influence the purely mean‑field descriptions for the number of seeds SY(t),A(t)(t) and seedlings
or small greens GY(t),A(t)(t). We can think of this generalization as adding third and fourth dimensions to
our existing model, but one where there are no explicitly trackedmaster equation states, only mean‑field
equations. The resulting state transition scheme is illustrated in figure 9 for a tree lifecycle and the full
system of equations can be found in our electronic supplementary material, appendix S1.

5.2. Speed of diffusion across changing climate
In figure 10, we show an example of how a deterministicmean‑field approach can overestimate the speed
of diffusion of a species over a landscape. The key factor is that the mean‑field approach does not cap‑
ture nonlinear terms correctly. For example, sites with very low carrying capacity might spend most of
their time without adult trees yet will consistently produce seeds in the mean‑field version. Likewise,
we used a model where young trees are competing for resources (e.g. light) such that the growth poten‑
tial of the population scales with the square‑root of the number of young trees rather than linearly. The
mean‑FLAME approach captures the fact that young trees are discrete quantities and systems will have
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Figure 9. Master equation with mean-field limits for tree species lifecycle. We track the population of trees over four stages of their
lifecycle: S seeds (state S), seedlings (state G for greens), saplings (state Y for young trees) and adult trees (state A). The last two stages
are important stochastic bottlenecks in the growth of a population and therefore captured by master equations with mean-field limits.
The horizontal dimension of the schema represents the number of adult trees, and the vertical dimension the number of young trees.
The seed and seedling dimensions are captured as a fully mean-field description (no explicit master equation state) and shown for the
absorbing state only for simplicity, but note that these dimensions exist for all states including mean-field limits. Across these states, we
capture arrival of new saplings and death of saplings (vertical arrows), growth of saplings into adult trees (diagonal arrows) and death
of adult trees (horizontal arrows).

0 young trees, or 1, or 2, etc. In a mean‑field model, the growth rate of the first young trees is artificially
boosted when their expected quantity can be any continuous number above zero.

Finally, note that the results of figure 10 used four mean‑field equations per grid cell in the mean‑field
model, and a total of 141 equations per grid cell in the mean‑FLAME implementation. The latter is com‑
posed of 5 × 5= 25 exactmaster equation states describing the number of young and adult trees, followed
by 10mean‑field limits (two equations each) and 1 double‑mean‑field regime (two equations), multiplied
by 3 to add mean‑field limits of seeds and greens. A similar but smaller mean‑FLAME implementation
is represented in figure 9.

6. Conclusion
Standard mathematical models that rely on deterministic or mean‑field approximations struggle to cap‑
ture scenarios where we need to account for the stochastic and discrete nature of spreading or diffusion
processes. We developed a master equation description close to absorbing states coupled with mean‑
field limits far from the absorbing states. This hybrid mean‑FLAME modelling approach allows us to
succinctly capture local extinctions mechanisms as well as stochastic bottlenecks in life cycles or spread‑
ing processes. In a nutshell, when tracking only 𝜖 states around an absorbing state in a d‑dimensional
system of m populations of size N, mean‑FLAME appears to perform as well as a full approximate mas‑
ter equation while requiringm𝜖d equations instead ofmNd equations. That represents a gain of (N∕𝜖)d in
computational complexity. Conversely, a full master equation approach is often impossible as it would
require Nmd equations. This speed‑up can be incredibly useful in high‑dimensional systems.

Beyond the mathematical details, our main contribution is the idea that mathematical models could
track individual system states when important (i.e. around absorbing states) and approximate them
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Figure 10. We run the diffusion of a tree species with a four-stage life cycle as described in the main text using both mean-field
and mean-FLAME models (with 5 exact states for young and adult trees alike). The behaviour shown is that of a typical run re-
gardless of parameters, which are chosen around the following values: 𝜇a = 1000.0, 𝜇s = 0.5, 𝜈s = 20.0, 𝜇g = 0.2, 𝜈g = 1.0,
𝜇y = 0.1, 𝜈y = 0.5 and 𝜈a = 0.05. We start the dynamics with no trees but 10 seeds and 20 seedlings in all sites with x< 5 and
y< 5. The entire landscape is a grid of (x, y) with x and y from 0 to 50, with local changing climate modelled by a carrying capac-
ity K(x, y, t) = 20(sin

√
(x + t)∕2 ⋅ cos [(y + t)∕5])2. Seeds are distributed locally and to the von Neumann neighbourhood of a

given site. We then track the dynamics from t= 0 to 100 and output the expected number of adult trees based on both approaches
at time t= 7.5, 15, 22.5, 30, 50, 90 (respectively, going from the top left to top right, then bottom left to bottom right panels). The
deterministic mean-field approach (10 000 equations) dramatically overestimates the initial speed at which the tree species can explore
the landscape. Note that a standard approximate master equation approach is intractable in this case (too many equations) and mean-
field limits are therefore required (this mean-FLAME model uses 360 000 equations). Finally, the time-varying local carrying capacity is
shown in panel C) for comparison.

when possible (i.e. far from absorbing states). We implemented this idea in a hybridmean‑field andmas‑
ter equation framework, which means it can be directly used in applications where master equations are
common but can be computationally expensive: dynamics on higher‑order networks [24], heterogeneous
group‑structured populations [25], co‑evolution of individuals and institutions [26] or noise‑induced
transitions [27]. The core idea could potentially be used to simplify other mathematical frameworks that
track individual states, such as probability generating functions or belief propagation frameworks that
track marginal distributions of potential outcomes [28,2930].

Implementation of our methods is not without challenges. First, as made clear in our case studies,
one must carefully walk through multiple types of states. There are three types of states when the sys‑
tem has a single dimension—the general master equation, the state coupled to the mean‑field limit,
and the mean‑field limit—but 3d types of states in d‑dimensional systems. Second, numerical integra‑
tors might struggle with a single system of equations where some values like the occupation number
have small values and derivatives, while others like the position of the mean‑field limits can have gigan‑
tic values. Interestingly, the mean‑field limits behave independently of their occupation numbers such
that one can integrate the mean‑field equations first and then use their solutions as an input to inte‑
grate the system of occupation numbers. As a starting point, we offer different numerical approaches
in both C++ and Python as part of our software release. Some pedagogical examples are available
at https://bit.ly/meanFLAME, and we have a complete repository of our different implementations at
https://github.com/nwlandry/mean‑FLAME.
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Future work could improve on the presented hybrid approach by creating stages of mean‑field limits,

essentially binning non‑explicit states in different ways. Going back to a birth–death process, the number
of active individuals could diverge if the death rate was not quadratic and we could then imagine creat‑
ing a mean‑field buffer for systems with more than 10 individuals but fewer than 100 and a mean‑field
limit beyond that. Following a master equation description with a series of mean‑field compartments
with carefully calibrated coupling might help capture the heterogeneity of growth processes that do not
converge to a homogeneous distribution around a steady‑state (e.g. rich‑get‑richer processes).

Recall that themean‑FLAMEapproach introduced here can fall back on our standardmean‑fieldmod‑
els in one limit (mean‑field limit going to the absorbing state) and on standard master equations in the
other (mean‑field limit going to infinity). And despite ongoing implementation challenges, the resulting
modelling tool can streamline the process of quickly exploring scenarios or parameter space using a sim‑
ple mean‑field model, then adding precision around important stochastic events as desired by adding
explicit states as needed and tuning the position of themean‑field limit. We therefore hope that this mod‑
elling approach will be used to explore possible interventions to better control complex systems around
their absorbing states, especially in rural or marginal areas where system sizes can be much smaller.

Finally, we have presented use cases of the mean‑FLAME approach that focused on extinction dy‑
namics, the spread of infectious diseases and dispersal of individuals into previously unoccupied areas.
However, it is worth considering other contexts that would benefit from our near absorbing state approx‑
imation of stochastic processes. Specifically, our approachmight allowmore explicit population viability
analysis particularly for small, isolated local populations found in increasingly fragmented landscapes
[31]. Moreover, in the coming decades we expect a reshuffling of most ecological systems. Modelling
techniques like we have presented here that simplify the number of states to be tracked while maintain‑
ing themultidimensional complexity of the systemmay improve our ability to consider the consequences
of new combinations of organisms, potential priority effects that may influence the resiliency of the new
ecosystem, or even the potential for new pandemics [32]. More generally, we hope that the approach we
have proposed helps to highlight critical gaps in howwe are approaching the development of ecological
models when we assume deterministic dynamics or that the expected state of a system represents its full
distribution of possible states. Life at themargins of systemsmay in fact bemore critical whenmodelling
complex systems and processes.
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