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Following publication of the original article [1], the authors identified errors in the equa-
tions in the 2.1 Measures section, Algorithm 2, 3, 4, Figure 1, 2, 3, 4, Table 1, 2 values and
a value and wording in the 2.1 Measures, 3.3 Local measures of simpliciality section and
the Acknowledgements section.

The incorrect and correct equations and wording in the 2.1 Measures section, Algo-
rithm 2, 3, Table 1, 2, 3.3 Local measures of simpliciality section and Acknowledgements
section are indicated hereafter.

The incorrect 2.1. sub-sections Edit Simpliciality and Face Edit Simpliciality:

Edit simpliciality The edit simpliciality (ES) is defined as the minimal number (or frac-
tion, in the normalized case) of additional edges needed to make a hypergraph a simplicial
complex.

Our formal definition uses the notion of an induced simplicial complex defined in
Sect. 1.1. Given a hypergraph H = (V , E) for which we want to measure the ES, we find
its maximal edges ˜︁E and construct the simplicial complex S = (V , C) induced on H, with
C =

⋃︁

e∈˜︁E 𝒫(e). The edit simpliciality is then

σES =
|E|
|C| , (2)

again satisfying σES ∈ [0, 1]; see Fig. 1C. (We note that one can use the induced simplicial
complex to define variants of the ES, e.g., a simplicial edit distance dES = |C| – |E| or a
normalized distance dNES = (|C| – |E|)/|C| = 1 – |E|/|C| = 1 – σES.)

The ES answers a slightly different question than the SF does—it counts missing hyper-
edges that would make the dataset into a simplicial complex, rather than the edges that
already satisfy downward closure. It thus offers a complementary, equally interpretable
measure of simpliciality. However, the ES has the disadvantage of being sensitive to out-
liers, as a handful of large hyperedges with few inclusions will rapidly drive σES towards
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0. Indeed, a hyperedge of size m without any inclusion contributes one edge to |E| but 2m

edges to |C| in the denominator of Eq. (2).

Face edit simpliciality Finally, building upon the idea of edit simpliciality, we define a
more localized notion of simpliciality, using the number of subfaces that must be added
to the hypergraph to make a particular face a simplex.

Given a hyperedge e, the number of edges one must add to the hypergraph to make e a
simplex is

dFES(e) = |𝒫(e)| – |c|,

where c = {f ∈ E | f ⊆ e}. We can think of this quantity as an edit distance, or face edit
distance. We use this quantity to define an average

d̄FES =
1

|F|
∑︂

e∈F

dFES(e),

where F is a set of edges—most commonly, F = ˜︁E or E. We exclusively use F = ˜︁E in this
study. These quantities are on the scale of counts, and to define quantities analogous to
previous simpliciality measures, we thus introduce a per-face normalization, either on a
distance scale (meaning that the quantity grows as the dataset becomes less simplicial):

d̄NFES =
1

|F|
∑︂

e∈F

dFES(e)

|𝒫(e)| ,

or, similarly to previous definitions, on a simpliciality scale:

σFES =
1

|F|
∑︂

e∈F

(︃

1 –
dFES(e)

𝒫(e)

)︃

. (3)

We call this last measure the face edit simpliciality (FES).
The FES normalizes the face edit distance as a fraction of its maximal simpliciality. This

normalization removes the dominance of large edges in the calculation of σES and, in
fact, exponentially down-weights the contribution of these edges. In addition, because
this metric is computed on faces, this is an averaged local metric.

The correct 2.1. sub-sections Edit Simpliciality and Face Edit Simpliciality:

Edit simpliciality The edit simpliciality (ES) is defined as the minimal number (or frac-
tion, in the normalized case) of additional edges needed to make a hypergraph a simplicial
complex.

Our formal definition uses the notion of an induced simplicial complex defined in
Sect. 1.1. Given a hypergraph H = (V , E) for which we want to measure the ES, we find
its maximal edges ˜︁E and construct the simplicial complex S = (V , C) induced on H, with
C =

⋃︁

e∈˜︁E 𝒫(e). The edit simpliciality is then

σES =
|E| – |˜︁E|
|C| – |˜︁E| , (2)
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again satisfying σES ∈ [0, 1]; see Fig. 1C. We subtract the number of maximal edges from
the total number of edges so that the edit simpliciality is zero in the case of a hypergraph
with no subfaces. (We note that one can use the induced simplicial complex to define
variants of the ES, e.g., a simplicial edit distance dES = |C| – |E| or a normalized distance
dNES = (|C| – |E|)/(|C| – |˜︁E|) = 1 – (|E| – |˜︁E|)/(|C| – |˜︁E|) = 1 – σES.)

The ES answers a slightly different question than the SF does—it counts missing hyper-
edges that would make the dataset into a simplicial complex, rather than the edges that
already satisfy downward closure. It thus offers a complementary, equally interpretable
measure of simpliciality. However, the ES has the disadvantage of being sensitive to out-
liers, as a handful of large hyperedges with few inclusions will rapidly drive σES towards
0. Indeed, a hyperedge of size m without any inclusion contributes one edge to |E| but 2m

edges to |C| in the denominator of Eq. (2).

Face edit simpliciality Finally, building upon the idea of edit simpliciality, we define a
more localized notion of simpliciality, using the number of subfaces that must be added
to the hypergraph to make a particular face a simplex.

Given a hyperedge e, the number of edges one must add to the hypergraph to make e a
simplex is

dFES(e) = |𝒫(e)| – |c|,

where c = {f ∈ E | f ⊆ e}. We can think of this quantity as an edit distance, or face edit
distance. We use this quantity to define an average

d̄FES =
1

|F|
∑︂

e∈F

dFES(e),

where F is a set of edges—most commonly, F = ˜︁E or E. We exclusively use F = ˜︁E in this
study. These quantities are on the scale of counts, and to define quantities analogous to
previous simpliciality measures, we thus introduce a per-face normalization, either on a
distance scale (meaning that the quantity grows as the dataset becomes less simplicial):

d̄NFES =
1

|F|
∑︂

e∈F

dFES(e)

|𝒫(e)| – 1
,

or, similarly to previous definitions, on a simpliciality scale:

σFES =
1

|F|
∑︂

e∈F

(︃

1 –
dFES(e)

|𝒫(e)| – 1

)︃

. (3)

We call this last measure the face edit simpliciality (FES). We subtract one in the denomi-
nators of both expressions so that when an edge has no subfaces, its normalized face edit
distance is one.

The FES normalizes the face edit distance as a fraction of its maximal simpliciality. This
normalization removes the dominance of large edges in the calculation of σES and, in
fact, exponentially down-weights the contribution of these edges. In addition, because
this metric is computed on faces, this is an averaged local metric.
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The incorrect Table 1:

Table 1 Properties of empirical datasets and their simpliciality. |V|, |E|, ⟨k⟩, ⟨s⟩, σSF , σES , and σFES
denote the number of nodes, the number of hyperedges, the mean degree, the mean edge size, the
simplicial fraction (SF), edit simpliciality (ES), and the face edit simpliciality (FES), respectively

Dataset |V| |E| ⟨k⟩ ⟨s⟩ σSF σES σFES

Proximity datasets
contact-primary-school 242 12,704 52.50 2.42 0.85 0.92 0.94
contact-high-school 327 7,818 23.91 2.33 0.81 0.93 0.92
hospital-lyon 75 1,824 24.32 2.43 0.91 0.95 0.97

Email datasets
email-enron 143 1,442 10.08 2.97 0.31 0.05 0.50
email-eu 967 23,729 24.54 3.12 0.32 0.05 0.52

Biological datasets
diseasome 516 314 0.61 3.00 0.00 0.05 0.04
disgenenet 1,982 760 0.38 5.14 0.00 0.00 0.01
ndc-substances 2,740 4,754 1.74 5.16 0.02 0.01 0.07

Other
congress-bills 1,715 58,788 34.28 4.95 0.03 0.01 0.10
tags-ask-ubuntu 3,021 145,053 48.01 3.43 0.15 0.25 0.46

The correct Table 1:

Table 1 Properties of empirical datasets and their simpliciality. |V|, |E|, ⟨k⟩, ⟨s⟩, σSF , σES , and σFES
denote the number of nodes, the number of hyperedges, the mean degree, the mean edge size, the
simplicial fraction (SF), edit simpliciality (ES), and the face edit simpliciality (FES), respectively

Dataset |V| |E| ⟨k⟩ ⟨s⟩ σSF σES σFES

Proximity datasets
contact-primary-school 242 12,704 52.50 2.42 0.85 0.88 0.94
contact-high-school 327 7,818 23.91 2.33 0.81 0.91 0.92
hospital-lyon 75 1,824 24.32 2.43 0.91 0.94 0.97

Email datasets
email-enron 143 1,442 10.08 2.97 0.31 0.04 0.50
email-eu 967 23,729 24.54 3.12 0.32 0.04 0.52

Biological datasets
diseasome 516 314 0.61 3.00 0.00 0.02 0.04
disgenenet 1,982 760 0.38 5.14 0.00 0.00 0.01
ndc-substances 2,740 4,754 1.74 5.16 0.02 0.00 0.07

Other
congress-bills 1,715 58,788 34.28 4.95 0.03 0.00 0.10
tags-ask-ubuntu 3,021 145,053 48.01 3.43 0.15 0.11 0.46

The incorrect 3.3 Local measures of simpliciality section:

The sentence currently reads:
(The correlation drops to ρ = 0.69 when comparing the SF and ES).

The sentence should read:
(The correlation drops to ρ = 0.6 when comparing the SF and ES).

The sentence currently reads:
For tags-ask-ubuntu, FES is weakly assortative, whereas the other two measures are

weakly disassortative.
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The sentence should read:
For tags-ask-ubuntu, FES is weakly assortative, SF is weakly disassortative, and ES is

strongly disassortative.

The incorrect Table 2:

Table 2 The simplicial assortativity of each dataset filtered to only include interactions of sizes two
and three for computational tractability

Dataset ρSF ρES ρFES

Proximity datasets
contact-primary-school 0.15 0.15 0.14
contact-high-school 0.22 0.34 0.24
hospital-lyon –0.02 –0.02 –0.01

Email datasets
email-enron 0.29 0.29 0.24
email-eu 0.19 0.16 0.16

Biological datasets
ndc-substances 0.57 0.65 0.72
diseasome N/A 0.46 0.75
disgenenet N/A 0.55 0.89

Other
congress-bills 0.78 0.48 0.75
tags-ask-ubuntu –0.03 –0.08 0.04

The correct Table 2:

Table 2 The simplicial assortativity of each dataset filtered to only include interactions of sizes two
and three for computational tractability

Dataset ρSF ρES ρFES

Proximity datasets
contact-primary-school 0.15 0.17 0.14
contact-high-school 0.22 0.37 0.24
hospital-lyon –0.02 –0.01 –0.01

Email datasets
email-enron 0.29 0.29 0.24
email-eu 0.19 0.16 0.16

Biological datasets
ndc-substances 0.56 0.54 0.69
diseasome N/A 0.28 0.68
disgenenet N/A 0.28 0.78

Other
congress-bills 0.78 0.33 0.75
tags-ask-ubuntu –0.03 –0.24 0.04
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The incorrect Algorithm 2:

Algorithm 2: Exhaustive edit simpliciality
Input: K , a set of edge sizes

m, the minimum acceptable simplex size
H = (V , E), a hypergraph
T , a trie constructed from the edges in H

Output: σES

σES = 0
// Construct the set of maximal faces.

F = {e ∈ E | e /∈ f , ∀f ∈ E, |e| ≥ m}
// D stores the unique missing subfaces.

D = ∅, is a set of sets
// Iterate over all maximal faces.

for f ∈ F do
// For each maximal face of the hypergraph, add all of

its missing subfaces not already present in the

global set of missing faces.

for e ∈𝒫K (f ) do
if e /∈ T then

D ← D ∪ e
end

end
end
// The number of edges in the minimal simplicial complex

is the sum of the number of edges in the original

hypergraph and the number of missing subfaces.

σES = |E|/(|E| + |D|)
return σES
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The correct Algorithm 2:

Algorithm 2: Exhaustive edit simpliciality
Input: K , a set of edge sizes

m, the minimum acceptable simplex size
H = (V , E), a hypergraph
T , a trie constructed from the edges in H

Output: σES

σES = 0
E = {e ∈ E | |e| ∈ K , |e| > m}
// Construct the set of maximal faces.

F = {e ∈ E | e /∈ f , ∀f ∈ E}
// D stores the unique missing subfaces.

D = ∅, is a set of sets
// Iterate over all maximal faces.

for f ∈ F do
// For each maximal face of the hypergraph, add all of

its missing subfaces not already present in the

global set of missing faces.

for e ∈𝒫K (f ) do
if e /∈ T then

D ← D ∪ e
end

end
end
// The number of edges in the minimal simplicial complex

is the sum of the number of edges in the original

hypergraph and the number of missing subfaces.

σES = (|E| – |˜︁E|)/(|E| – |˜︁E| + |D|)
return σES
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The incorrect Algorithm 3:

Algorithm 3: Memory-efficient edit simpliciality
Input: K , a set of edge sizes

m, the minimum acceptable simplex size
H = (V , E), a hypergraph
T , a trie constructed from the edges in H

Output: σES
σES = 0
// Construct the set of maximal faces.
F = (e ∈ E | e /∈ f , ∀f ∈ E, |e| ≥ m)
d = 0
// Iterate over all enumerated maximal faces.
for i = 1 . . . |F| do

f = Fi
// First, calculate the number of missing faces for a given

maximal face.
˜︁d = |𝒫K (f )|
for e ∈𝒫K (f ) do

if e ∈ T then
˜︁d ←˜︁d – 1

end
end
// Update the total number of missing subfaces

d ← d +˜︁d
// Calculate the number of redundant missing subfaces

counted for the maximal faces already seen. To prevent
looping over all previous maximal edges, we iterate only
over the previous maximal faces, which are also
neighbors of the current maximal face.

D = ∅
for j = {1 . . . i – 1} ∩ {k | ek ∩ f ≠ ∅} do

// For each prior maximal face, we add the missing edges
formed by the powerset of the intersection of that
edge and the current maximal edge to the complete set
of redundant missing edges.

e = Fj
g = e ∩ f
for h ∈𝒫K∪|g|(g) do

if g /∈ T then
D ← D ∪ g

end
end

end
// Subtract the redundant missing subfaces
d ← d – |D|

end
σES = |E|/(|E| + d)
return σES
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The correct Algorithm 3:

Algorithm 3: Memory-efficient edit simpliciality
Input: K , a set of edge sizes

m, the minimum acceptable simplex size
H = (V , E), a hypergraph
T , a trie constructed from the edges in H

Output: σES
σES = 0
E = {e ∈ E | |e| ∈ K , |e| > m}
// Construct the set of maximal faces.
F = {e ∈ E | e /∈ f , ∀f ∈ E}
d = 0
// Iterate over all enumerated maximal faces.
for i = 1 . . . |F| do

f = Fi
// First, calculate the number of missing faces for a given

maximal face.
˜︁d = |𝒫K (f )|
for e ∈𝒫K (f ) do

if e ∈ T then
˜︁d ←˜︁d – 1

end
end
// Update the total number of missing subfaces

d ← d +˜︁d
// Calculate the number of redundant missing subfaces

counted for the maximal faces already seen. To prevent
looping over all previous maximal edges, we iterate only
over the previous maximal faces, which are also
neighbors of the current maximal face.

D = ∅
for j = {1 . . . i – 1} ∩ {k | ek ∩ f ≠ ∅} do

// For each prior maximal face, we add the missing edges
formed by the powerset of the intersection of that
edge and the current maximal edge to the complete set
of redundant missing edges.

e = Fj
g = e ∩ f
for h ∈𝒫K∪|g|(g) do

if g /∈ T then
D ← D ∪ g

end
end

end
// Subtract the redundant missing subfaces
d ← d – |D|

end
// The number of edges in the minimal simplicial complex is

the sum of the number of edges in the original hypergraph
and the number of missing subfaces.

σES = (|E| – |˜︁E|)/(|E| – |˜︁E| + d)
return σES
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The incorrect Algorithm 4:

Algorithm 4: Face edit simpliciality
Input: K , a set of edge sizes

m, the minimum acceptable simplex size
H = (V , E), a hypergraph
T , a trie constructed from the edges in H

Output: σFES

σFES = 0
// Construct the set of maximal faces.

F = {e ∈ E | e /∈ f , ∀f ∈ E, |e| ≥ m}
σFES = 0
// Iterate over all maximal faces.

for f ∈ F do
// For each maximal face, calculate the fraction of

missing faces.

s = 0
for e ∈𝒫K (f ) do

if e ∈ T then
s ← s + 1/|𝒫K (f )|

end
end
// Update the running average.

σFES ← σFES + s/|F|
end
return σFES
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The correct Algorithm 4:

Algorithm 4: Face edit simpliciality
Input: K , a set of edge sizes

m, the minimum acceptable simplex size
H = (V , E), a hypergraph
T , a trie constructed from the edges in H

Output: σFES

σFES = 0
E = {e ∈ E | |e| ∈ K , |e| > m}
// Construct the set of maximal faces.

F = {e ∈ E | e /∈ f , ∀f ∈ E}
σFES = 0
// Iterate over all maximal faces.

for f ∈ F do
// For each maximal face, calculate the fraction of

missing faces.

s = 0
for e ∈𝒫K (f ) do

if e ∈ T then
s ← s + 1/(|𝒫K (f )| – 1)

end
end
// Update the running average.

σFES ← σFES + s/|F|
end
return σFES
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The incorrect Figure 1:

Figure 1 The Ego Network Model, with the names and expected sizes of each subgroup for social networks
of humans
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The correct Figure 1:

Figure 1 The Ego Network Model, with the names and expected sizes of each subgroup for social networks
of humans
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The incorrect Figure 2:

Figure 2 All four possible signed triads, as per Structural Balance Theory. The subscript number following the
“T” corresponds to the number of positive connections for that triad

The correct Figure 2:

Figure 2 All four possible signed triads, as per Structural Balance Theory. The subscript number following the
“T” corresponds to the number of positive connections for that triad
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The incorrect Figure 3:

Figure 3 Percentages of positive, neutral and negative interaction labels estimated by each model (95%
confidence intervals)
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The correct Figure 3:

Figure 3 Percentages of positive, neutral and negative interaction labels estimated by each model (95%
confidence intervals)
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The incorrect Figure 4:

Figure 4 Percentages of positive and negative relationship labels estimated by each model (95% confidence
intervals)

The correct Figure 4:

Figure 4 Percentages of positive and negative relationship labels estimated by each model (95% confidence
intervals)
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Ref. 63 is updated and now reads: Landry, N.: nwlandry/the-simpliciality-of-higher-
order-networks: v0.3. https://doi.org/10.5281/zenodo.15707834

The incorrect Acknowledgements section reads:

N.W.L. would like to acknowledge the participants of the“Workshop on Modelling and
Mining Complex Networks as Hypergraphs”at Toronto Metropolitan University and Tim
LaRock for helpful conversations. N.W.L. would also like to thank Tzu-Chi Yen for lending
his expertise on the biSBM inference.

The correct Acknowledgements section should read:

N.W.L. would like to acknowledge the participants of the“Workshop on Modelling and
Mining Complex Networks as Hypergraphs”at Toronto Metropolitan University and Tim
LaRock for helpful conversations. N.W.L. would also like to thank Tzu-Chi Yen for lend-
ing his expertise on the biSBM inference. We thank François Théberge for pointing out
inconsistencies between the code and notation in the earlier versions of this manuscript.

Equations in the 2.1 Measures section, Algorithm 2, 3, 4, Figure 1, 2, 3, 4, Table 1, 2, 3.3
Local measures of simpliciality section and Acknowledgements section have been updated
above and the original article [1] has been corrected.
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