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Opinion disparity in hypergraphs with community structure
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The division of a social group into subgroups with opposing opinions, which we refer to as opinion disparity,
is a prevalent phenomenon in society. This phenomenon has been modeled by including mechanisms such as
opinion homophily, bounded confidence interactions, and social reinforcement mechanisms. In this paper, we
study a complementary mechanism for the formation of opinion disparity based on higher-order interactions,
i.e., simultaneous interactions between multiple agents. We present an extension of the planted partition model
for uniform hypergraphs as a simple model of community structure, and we consider the hypergraph Susceptible-
Infected-Susceptible (SIS) model on a hypergraph with two communities where the binary ideology can spread
via links (pairwise interactions) and triangles (three-way interactions). We approximate this contagion process
with a mean-field model and find that for strong enough community structure, the two communities can hold
very different average opinions. We determine the regimes of structural and infectious parameters for which
this opinion disparity can exist, and we find that the existence of these disparities is much more sensitive to
the triangle community structure than to the link community structure. We show that the existence and type of
opinion disparities are extremely sensitive to differences in the sizes of the two communities.
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I. INTRODUCTION

Modeling the spreading and dynamics of opinions on
social networks is a problem of major interest in modern
network science. Many classical models of opinion dynamics,
such as the voter model [1], the majority rule model [2,3],
and the Sznajd model [4], inevitably result in consensus [5],
i.e., the same opinion shared by all agents. In reality, how-
ever, consensus is rarely reached; instead, strong differences
in opinion between different groups, i.e., polarization, are
commonly observed. This is evident in politics [6], social
media [7], and ideology [8]. Many opinion models giving
rise to polarization are based on opinion homophily, i.e., the
tendency of individuals to associate with similar-minded in-
dividuals [9–13], bounded confidence interactions [14–16],
unfollowing on social media platforms [17], and social rein-
forcement and feedback mechanisms [18,19]. Other models
for the formation of polarization include the effects of co-
operation and partisanship [20,21], echo chambers on social
media [7], radicalization dynamics [22], cognitive biases [23],
moderates seen as outsiders [24], and media influence [25].

A closely related phenomenon to polarization occurs when
social groups have different average opinions, which we refer
to as opinion disparity to avoid confusion with the extensive
literature and existing definitions of polarization. In this pa-
per, we explore a mechanism for the formation of opinion
disparity driven by the presence of simultaneous interactions
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between multiple agents, known as higher-order interac-
tions. Reference [26] noted that higher-order interactions in
the Susceptible-Infected-Susceptible (SIS) model can lead to
bistability, hysteresis, and explosive transitions in random
simplicial complexes, and Ref. [27] extended this result to
more complex hypergraphs. Since higher-order interactions
lead to bistability in all-to-all and random hypergraphs, one
expects that hypergraphs with strong community structure
retain—to some extent—the ability to sustain different opin-
ions in different communities. Confirming this, Ref. [28]
found that hypergraph community structure combined with
higher-order interactions can result in multistability, intermit-
tency, and complex dynamics for a generalized SIS model
on hypergraphs. Reference [29] studied the majority rule
model on hypergraphs with community structure and found
that for sufficiently disconnected communities, the average
states of each community are well-separated. Extending these
previous results, here we explore the interplay of community
structure and higher-order interactions systematically by first
developing a generative model for hypergraphs with tunable
community structure, and then studying a social contagion
model on hypergraphs with community structure to determine
which combinations of hypergraph and contagion parameters
support communities with different opinions. By analyzing a
mean-field model of this social contagion process, we find that
opinion disparity is possible for strong enough community
structure in the higher-order interactions, and it can appear
suddenly as the strength of the community structure is in-
creased. Furthermore, we find that the presence of opinion
disparity can be extremely sensitive to the relative size of the
communities.
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The structure of our paper is as follows: we define the
contagion model and generative hypergraph models that we
use in Sec. II, we use these definitions in Sec. III to develop
and analyze mean-field models of contagion spread on hyper-
graphs with community structure, and we discuss our results
in Sec. IV.

II. MODELS

In this section, we present both a generative hypergraph
model that incorporates community structure as well as the
opinion model that we use in the rest of the paper.

A. Notation

A hypergraph, H = (V, E ), is a mathematical object that
encodes relationships between arbitrary numbers of entities,
where V is the set of N = |V | vertices and E is the set of hy-
peredges, where a hyperedge e ∈ E is a subset of the vertices.
An m-uniform hypergraph is a hypergraph where |e| = m for
every hyperedge e in the set of hyperedges E . The mth-order
degree of a node i, k(m)

i , is the number of m-hyperedges of
which node i is a member. In the following, we will use
k = k(2) to signify the second-order degree and q = k(3) to
signify the third-order degree. We will indicate their mean
values by 〈k〉 and 〈q〉, respectively. We will also refer to
hyperedges of sizes 2 as links and to hyperedges of size 3
as triangles. When an m-uniform hypergraph is specified and
there is no possibility of confusion, we will denote k = k(m)

to simplify notation.

B. The stochastic block model for uniform hypergraphs

The stochastic block model (SBM) is a simple random net-
work model incorporating community structure [31]. Given
a network with G communities, each node i is assigned a
community label gi ∈ {1, 2, . . . , G}. The probability that two
nodes i and j are connected with an edge is assumed to depend
only on their community labels gi and g j . Extending this
notion to m-uniform hypergraphs gives rise to the m-uniform
hypergraph stochastic block model (m-HSBM) [32,33]. Given
an m-uniform hypergraph, suppose that each node i has a
community label gi and that the number of communities is
given by G. Then, given nodes i1, . . . , im with community
labels gi1 , . . . , gim , we define the probability that a hyperedge
connects these nodes as Pgi1 ,...,gim

. Because every vertex order
in a hyperedge is equivalent, P is symmetric, i.e., Pi1,...,im =
Pσi1 ,...,σim

, where σ is any permutation of the indices.
In our numerical experiments, we will generate hyper-

graphs from a version of this model. Sampling from this
model by iterating through every potential edge and accepting
it with a specified probability is inefficient for sparse hyper-
graphs. In Appendix A, we present a more efficient algorithm
for sampling sparse hypergraphs from this model.

C. Planted partition model for uniform hypergraphs

Extending the planted partition model for pairwise net-
works [34] and the hypergraph stochastic block model
[32,33,35,36], here we introduce the m-uniform Hypergraph
Planted Partition Model (HPPM). Using a single parameter,

FIG. 1. An illustration of a 3-uniform hypergraph sampled from
the HPPM model with varying strengths of community structure
using XGI [30].

this generative model interpolates from an m-uniform hyper-
graph with completely random connections to an m-uniform
hypergraph with two disconnected communities, while main-
taining a constant expected degree for each node (see Fig. 1).

Consider a set V of N vertices divided into two communi-
ties of sizes ρN and (1 − ρ)N , with 0 < ρ < 1. For a given set
e of m nodes, we let the probability that a hyperedge connects
the edges be

P(e ∈ E ) =
⎧⎨
⎩

pin, all nodes in e belong to
the same community,

pout otherwise.
(1)

Note that we are following the “all-or-nothing” (AON) def-
inition in Ref. [37], which considers a hyperedge to connect
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two different communities if it contains at least one member of
each community. One can relax this assumption by accounting
for the fraction of nodes in each community [37,38], but we
do not consider this case here.

To create hypergraphs with a tunable amount of commu-
nity structure, we change the relative size of pin and pout while
ensuring that the mean degree 〈k(m)〉, which henceforth will
be indicated with 〈k〉, is constant. When there is no commu-
nity structure, both probabilities are equal to the hypergraph
Erdös-Rényi probability pER,

pout = pin = pER = 〈k〉N/

[
m

(
N

m

)]
≈ 〈k〉 (m − 1)!

Nm
, (2)

where here and in the following we assume N � m and ap-
proximate (N

m) by Nm/m!. To determine pin and pout when
there is community structure, we note that the total expected
number of hyperedges M is given by the sum of intra- and
intercommunity hyperedges

M =
(

ρN

m

)
pin +

(
(1 − ρ)N

m

)
pin

+ s

[(
N

m

)
−

(
ρN

m

)
−

(
(1 − ρ)N

m

)]
pout. (3)

Using 〈k〉 = mM/N , approximating
(N

m

)
by Nm/m!, and using

〈k〉(m − 1)!/Nm−1 = pER, we find

pER = qρ,m pin + [1 − qρ,m]pout, (4)

where

qρ,m = ρm + (1 − ρ)m. (5)

Now we introduce the imbalance parameter ερ,m [34] that in-
terpolates between a hypergraph without community structure
(pout = pER) for ερ,m = 0 and a hypergraph with completely
disconnected communities (pout = 0) for ερ,m = 1. Accord-
ingly, we parametrize pin and pout as

pout = pER(1 − ερ,m), (6)

pin = pER(1 + rρ,mερ,m). (7)

Inserting this into Eq. (4), we find

rρ,m = 1 − qρ,m

qρ,m
, (8)

which is the ratio between inter- and intracommunity edges.
This sheds light on why the imbalance parameter in (7) is mul-
tiplied by rρ,m: since there are more potential inter-community
hyperedges than intracommunity hyperedges, this factor is
needed so that the mean degree remains constant as the rel-
ative size of pin and pout is changed.

For the special case of equal-sized communities, ρ = 1/2,
the probabilities simplify to

pin = pER + (2m−1 − 1)εm pER, (9)

pout = pER − εm pER. (10)

Note that in this case, the factor r1/2,m = 2m−1 − 1 can be
understood by the fact that, given a node in one community,
there are 2m−1 − 1 more potential intercommunity links than

intracommunity links. In the following, we define εm ≡ ε1/2,m

for simplicity. Also in this case, in terms of the expected intra-
and intercommunity mean degrees

〈kin〉 =
(

N/2 − 1

m − 1

)
pin, (11)

〈kout〉 =
[(

N

m − 1

)
−

(
N/2 − 1

m − 1

)]
pout, (12)

the imbalance parameter is given by

εm = 〈kin〉 − 〈kout〉
(2m−1 − 1)〈k〉 . (13)

For a given value ρ and 〈k〉, changing the probabilities of
intra- and intercommunity links according to Eqs. (6) and (7)
produces hypergraphs with varying amounts of community
structure. Figure 1 shows three hypergraphs obtained by the
HPPM with m = 3, ρ = 1/2, 〈q〉 = 2, and values of ε3 equal
to 0 (top), 0.75 (middle), and 0.95 (bottom).

Before moving on, we note that the HPPM differs from the
generative model used in Ref. [29] in that the total expected
number of hyperedges in the hypergraph is held constant as
the amount of community structure is varied, allowing us to
isolate the effect of community structure on the dynamics.

D. Opinion model and opinion disparity

Following Refs. [26,27], we study the hypergraph collec-
tive contagion model. This model allows nodes to hold binary
opinions: susceptible (0) and infected (1). An infected node
spontaneously transitions to the susceptible state at a rate
γ > 0 independently of the states of neighboring nodes. A
susceptible node may transition to the infected state at a rate
βm if that node is a member of a group of size m and all of
the other members in this group are infected. It is assumed
that the node may be infected independently by each such
group to which it belongs. We note that the two opinion states
are asymmetric in this model: in the absence of influence or
infection by other groups, an individual will almost surely
heal given enough time; however, a healthy individual will not
become infected without the influence of other individuals.
Therefore, the opinion corresponding to the infected state
may only be sustained if the opinion is continually shared
with neighbors. This is akin to a peer pressure effect where
a behavior will likely die out without the influence of groups
to sustain it.

In Refs. [26,27], it was found that this model admits
bistable regions where a state with no infection and a state
with a macroscopic fraction of infected nodes are simulta-
neously stable. Therefore, viewing hypergraphs with strong
community structure as perturbations of disconnected hyper-
graphs, we expect that, depending on the parameters, we will
find stable solutions where the fractions of infected nodes in
each community are very different.

The observation above motivates the definition of opinion
disparity we will use in this paper. Given a hypergraph with
community structure, we define the opinion disparity, ψi j ,
between communities i and j as the maximum difference in
average opinions between the two communities that can be
sustained at equilibrium. For example, a hypergraph where
all the nodes in one community have opinion 1 and all the
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FIG. 2. Example of two communities with no opinion disparity
(top) and maximum opinion disparity (bottom). Infected and suscep-
tible nodes are shown as black and white, respectively.

nodes in the other community have opinion 0 in the steady
state has the maximum possible opinion disparity, ψi j = 1. On
the other hand, when the fraction of nodes with opinion
1 is the same in each community, the opinion disparity is
zero. Note that this definition of opinion disparity assumes
the existence of predefined communities, and that the com-
munity membership of each node is known. The opinion
disparity differs from polarization in that polarization is often
measured as a property, such as bimodality, of the opinion
distribution [39,40]. In this formalism, bimodal opinion dis-
tributions can have zero opinion disparity, depending on the
community membership of the nodes (see Fig. 2). There-
fore, our definition is more appropriate to quantify the extent
to which observed community structure in a hypergraph is
correlated with nodal opinions. Caution is advised when
community structure cannot be reasonably expected because
the value of the opinion disparity is dependent on the nodal
community labels. In this paper, we do not focus on the
inference of these labels, but instead refer the reader to ar-
ticles discussing higher-order community detection, such as
Refs. [33,37,41,42].

III. MEAN-FIELD ANALYSIS

In this section, we derive and analyze mean-field equa-
tions describing the dynamics of the opinion model introduced
in Sec. II D for hypergraphs with community structure. For
simplicity, we only consider hypergraphs with hyperedges of
sizes 2 (links) and 3 (triangles). First, we consider the case of
equal-sized, i.e., balanced, communities.

A. Balanced communities

Consider a hypergraph of size N with hyperedges of sizes
2 (links) and 3 (triangles) assigned following the HPPM
in Sec. II C with parameters ρ = 1/2, ε2 ≡ ε1/2,2, and ε3 ≡
ε1/2,3, respectively. We denote the fraction of infected individ-
uals in community i as xi and, assuming N is large, extend
the mean-field model of Ref. [26] to include community
structure.

We derive a rate equation for the fraction of infected nodes
in the first community, x1, of the form

dx1

dt
= −γ x1 + (1 − x1)[β2N2 + β3N3], (14)

where −γ x1 is the rate of spontaneous healing, (1 − x1) is the
fraction of nodes that are susceptible, and N2, N3 are the ex-
pected number of infected links and triangles, respectively, to
which a randomly chosen node in community 1 belongs. The
corresponding equation for x2 can be obtained by permuting
x1 and x2.

The number of infected contacts via pairwise interactions,
N2, can be obtained by adding the expected number of infected
neighbors in communities 1 and 2. Note that, according to the
planted partition model for m = 2, the probability that two
nodes are connected to each other is pin = (1 + ε2)〈k〉/N if
they belong to the same community (in this case, commu-
nity 1) and pout = (1 − ε2)〈k〉/N if they belong to different
communities [cf. Eqs. (9) and (10)]. Multiplying these by the
expected number of infected nodes in community i, xi(N/2),
and adding, we find

N2 = 1
2 〈k〉[(1 + ε2)x1 + (1 − ε2)x2].

To find the number of infected triangles to which a node
in community 1 belongs, we proceed similarly. According
to the planted partition model for m = 3, the probability
that three nodes form a 3-hyperedge is pin = 2(1 + 3ε)〈q〉/N2

if they are in the same community and pout = 2(1 − ε)〈q〉/N2

if they are in different communities. Adding together the cases
in which the two other nodes are both in community 1, in
communities 1 and 2, in communities 2 and 1, or both in
community 2, and taking into account that the number of
unique triangles in each community including a given node
is

(N/2
2

) ≈ N2/8, we find

N3 = 1
4 〈q〉[(1 + 3ε)x2

1 + 2(1 − ε)x1x2 + (1 − ε)x2
2

]
.

Putting all the terms together, we find

dx1

dt
= −γ x1 + β2

2
〈k〉(1 − x1)[(x1 + x2) + ε2(x1 − x2)]

+ β3

4
〈q〉(1 − x1)

[
(x1 + x2)2 + ε3

(
3x2

1 − 2x1x2 − x2
2

)]
.

Setting γ = 1 (after, if necessary, rescaling time), defining
β̃2 = β2〈k〉, β̃3 = β3〈q〉, and including the analogous equa-
tion for dx2/dt , we obtain the system of equations

dx1

dt
= − x1 + β̃2

2
(1 − x1)[(x1 + x2) + ε2(x1 − x2)]

+ β̃3

4
(1 − x1)

[
(x1 + x2)2 + ε3

(
3x2

1 − 2x1x2 − x2
2

)]
,

(15)

dx2

dt
= − x2 + β̃2

2
(1 − x2)[(x1 + x2) + ε2(x2 − x1)]

+ β̃3

4
(1 − x2)

[
(x1 + x2)2 + ε3

(
3x2

2 − 2x1x2 − x2
1

)]
.

(16)

This system of equations characterizes the dynamics of the
average opinions in communities 1 and 2, x1 and x2. We refer
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to stable fixed points with x1 �= x2 as asymmetric fixed points,
and to fixed points with x1 = x2 as symmetric fixed points.
According to our definition of opinion disparity in Sec. II D,
the existence of stable asymmetric fixed points corresponds to
nonzero opinion disparity, given by

ψ12 = max{|x1 − x2| such that (x1, x2)

is a stable fixed point of (15) and (16)}. (17)

Since we will consider only two communities, for simplicity
we will denote the opinion disparity by ψ ≡ ψ12. Before
discussing the regimes where opinion disparity exists, it is
convenient to study the dynamics without opinion disparity,
i.e., along the invariant line x1 = x2 = x. Along that line, the
dynamics are given by

dx

dt
= −x + β̃2(1 − x)x + β̃3(1 − x)x2, (18)

which describes the system without community structure
studied in Ref. [26]. Equation (18) leads to the symmetric
fixed points (corresponding to Eq. (4) in [26])

x = 0, (19)

x = β̃3 − β̃2 ±
√

(β̃2 + β̃3)2 − 4β̃3

2β̃3
. (20)

Considering now the full dynamics, linearization of
Eqs. (15) and (16) about the fixed point (0,0) shows that this
fixed point becomes unstable for values of β̃2 larger than the
epidemic threshold β̃c

2 = 1. For β̃3 > 1, the two nonzero sym-
metric fixed points (20) appear at a saddle-node bifurcation at
β̃2 = 2

√
β̃3 − β̃3, and the smaller of these fixed points merges

with x = 0 in a subcritical bifurcation as β̃2 approaches β̃c
2 =

1. Interestingly, these critical values do not depend on ε2

and ε3. Therefore, this analysis indicates that when the com-
munities have the same size, community structure does not
modify the Erdös-Rényi model epidemic threshold or onset
of bistability, at least regarding the symmetric fixed points.
Earlier studies corroborate this result for pairwise networks
[43,44]. However, we note that more accurate approximations
that include pair correlations (e.g., Ref. [45]) have shown that
the epidemic threshold in hypergraph SIS models can depend
on the strength of higher-order interactions. Therefore, we
anticipate that there might be corrections to our results due
to correlations not included in the mean-field analysis.

Having studied the symmetric fixed points, now we turn
to the more interesting asymmetric fixed points that support
opinion disparity. As an illustrative example, consider the case
ε2 = 0.5, ε3 = 0.75, β̃2 = 0.2, and β̃3 = 4 shown in Fig. 3(a).
In this case, the only fixed points are the three symmetric fixed
points specified in Eqs. (19) and (20), and therefore there
is no opinion disparity. Changing ε3 to 0.85 results in the
same symmetric fixed points and two additional asymmetric
unstable fixed points [Fig. 3(b)] created via a pitchfork bifur-
cation. Increasing ε3 to 0.95, two additional stable (solid black
circles) and two unstable (empty circles) asymmetric fixed
points are created through saddle-node bifurcations, resulting
in positive opinion disparity [Fig. 3(c)]. Thus, we see that

FIG. 3. A phase plot of Eqs. (15) and (16) with ε2 = 0.5,
β̃2 = 0.2, and β̃3 = 4 for three different values of ε̃3. These plots
illustrate the cases in which there are no asymmetric fixed points
(ε3 = 0.75), only unstable asymmetric fixed points (ε3 = 0.85),
and stable asymmetric fixed points (ε3 = 0.95). The filled circles
correspond to stable fixed points, and the open circles correspond
to unstable fixed points.
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FIG. 4. The opinion disparity with respect to community struc-
ture (first row) and infectiousness (second row). Note the different
ranges of ε2 and ε3 in panels (a) and (b) and β̃2 and β̃3 in panels
(c) and (d). The opinion disparity is computed in two ways: from
the stable fixed points of Eqs. (15) and (16) (first column) and from
stochastic simulations of the contagion dynamics (second column).

there is a sudden onset of opinion disparity as ε3 is increased
above a certain threshold. This behavior is not present for the
hypergraph contagion model on random null models without
community structure or higher-order interactions.

In the remainder of this section, we will study how
the opinion disparity depends on the community structure
and infectiousness parameters (ε2, ε3, β̃2, β̃3) for the case
of equal-sized communities. Given ε2, ε3, β̃2, and β̃3, we
compute the opinion disparity numerically by setting the
derivatives in Eqs. (15) and (16) equal to zero, using interval
root finding methods to find all fixed points of these 2D cou-
pled equations in [0, 1]2, and lastly, selecting the stable fixed
point with the largest value of |x1 − x2|. The stability of each
fixed point is determined from the eigenvalues of the Jacobian
associated with Eqs. (15) and (16), shown in Appendix C.

In Fig. 4(a), we plot the opinion disparity ψ calculated as
described above as a function of ε2 and ε3 with β̃2 = 0.2 and
β̃3 = 4. We see that there is a pronounced region for large
ε3 where opinion disparity occurs. The existence of opin-

ion disparity is much more sensitive to community structure
of the triangles (ε3) than that of the links (ε2). To validate
our results, in Fig. 4(b) we plot the opinion disparity found
from numerical simulation of the infection model on a hyper-
graph with links and triangles assigned following the HPPM
with m = 2, 〈k〉= 20 and m = 3, 〈q〉 = 20, respectively, and
N = 104. Further details on the numerical simulations may be
found in Appendix B. The agreement between mean-field the-
ory and the stochastic simulations is reasonable. One possible
explanation for discrepancies between the two is that although
opinion disparity may occur in the mean-field equations ac-
cording to the definition in Eq. (17), in practice the fixed
point might be too weakly stable to allow sustained opinion
disparity to occur under the presence of finite-size effects
[cf. Fig. 8(a)].

Now we look at the effect of the infection rates for a
fixed community structure. We expect opinion disparity to
be related to the bistable regime of a single community,
which occurs when β̃3 > 1, 2

√
β̃3 − β̃3 < β̃2 < 1. If the com-

munities were completely disconnected, this bistable region
would correspond to stable opinion disparity. In practice, con-
nections between the communities result in a much smaller
opinion disparity region as shown in Figs. 4(c) and 4(d). In
Fig. 4(c), we plot ψ for β̃2 on the interval [0, 0.5] and β̃3 on the
interval [3, 6] for ε2 = 0.5 and ε3 = 0.95 found numerically
from the mean-field equations, and in Fig. 4(d) we show the
corresponding microscopic simulations using the same HPPM
described above. In Fig. 5, we explore this further by showing
how the opinion disparity region shrinks as ε2 (a) and ε3 (b)
are decreased from 1 to 0 and 0.95, respectively, when starting
from two completely disconnected communities.

In summary, the analysis of the balanced communities
shows that opinion disparity can occur for large values of the
triangle community structure parameter ε3, and that relatively
few connections between the communities can significantly
reduce the size of the region in (β̃2, β̃3) space where opinion
disparity occurs. In the next section, we will study the case of
imbalanced (i.e., different sized) communities. As we will see,
even a small difference in size can cause dramatic changes in
the opinion disparity.

B. Imbalanced communities

We now explore the effect of unequal community sizes.
Considering the HPPM model of Sec. II C and performing the
same calculations as in Sec. III A for an arbitrary ρ, we obtain

dx1

dt
= − x1 + β̃2(1 − x1)[ρ(1 + r2ε2)x1 + (1 − ρ)(1 − ε2)x2]

+ β̃3(1 − x1)
[
ρ2(1 + r3ε3)x2

1 + 2ρ(1 − ρ)(1 − ε3)x1x2 + (1 − ρ)2(1 − ε3)x2
2

]
, (21)

dx2

dt
= − x2 + β̃2(1 − x2)[(1 − ρ)(1 + r2ε2)x2 + ρ(1 − ε2)x1]

+ β̃3(1 − x2)
[
(1 − ρ)2(1 + r3ε3)x2

2 + 2(1 − ρ)ρ(1 − ε3)x2x1 + ρ2(1 − ε3)x2
1

]
, (22)

where we let ε2 = ερ,2, ε3 = ερ,3, r2 = rρ,2, and r3 = rρ,3. As
before, we can linearize this system and compute the eigen-
values of the Jacobian at x1 = x2 = 0 to determine stability.

The eigenvalues are given by

λ = −1 + 1
2 β̃2(1 + r2ε2 ±

√
	),
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FIG. 5. A phase diagram illustrating how changes with (a) ε2 and (b) ε3 affect the regions over which opinion disparity can occur. In
this diagram, the upper left region enclosed by each line corresponds to the β̃2, β̃3 region in which opinion disparity can occur for given
values of ε2 and ε3, and the remaining area is where opinion disparity does not occur. The boundary lines in panel (a) correspond to
ε2 = 0, 0.25, 0.5, 0.75, 1.0 with ε3 = 1, and the boundary lines in panel (b) correspond to ε3 = 0.95, 0.9675, 0.975, 0.9875, 1.0 with ε2 = 1.

where

	 = 1 + 2ε2[4(ρ − 1)ρ + (1 − 2ρ)2r2]

+ ε2
2 [(1 − 2ρ)2r2

2 − 4(ρ − 1)ρ].

Setting the maximal eigenvalue equal to zero and substituting
the definition of r2 determines the epidemic threshold

β̃c
2 = 2

1 +
√

1 + 4b
a ε2 − 4c

a2 ε
2
2 + (1/a − 1)ε2

, (23)

where a = 1 − 2ρ + 2ρ2, b = ρ(ρ − 1), and c = 3ρ4 −
6ρ3 + 4ρ2 − ρ are functions of ρ. When ρ = 1/2 we obtain
a = 1/2, b = −1/4, and c = −1/16, and we recover the epi-
demic threshold β̃c

2 = 1. For all other values of ρ, however,
the epidemic threshold depends on ε2. To illustrate this, in
Fig. 6 we plot β̃c

2 as a function of ρ for ε2 = 0, 0.25, 0.5, 0.75,
and 1. In agreement with our previous calculations, the
epidemic threshold is independent of ε2 for balanced com-

FIG. 6. A plot of the epidemic threshold β̃c
2 with respect to ρ

predicted with Eq. (23). The line corresponding to ε2 = 0 is the
epidemic threshold for the Erdös-Rényi case.

munities. This plot also shows that different relative sizes are
optimal in the spread of a network SIS contagion in the sense
that they result in a lower epidemic threshold. Finally, we note
that the epidemic threshold is independent of ε3 for all values
of ρ.

Changing the relative sizes of the communities not only
changes the epidemic threshold, but it also affects the presence
and strength of opinion disparity. To quantify opinion dispar-
ity in more detail, we define the one-sided opinion disparities
to be

ψ1 = x̃1 − x̃2, (24)

ψ2 = x̂2 − x̂1, (25)

where (̃x1, x̃2) is the stable fixed point of Eqs. (21) and (22)
with the largest value of x1 − x2, and (̂x1, x̂2) is the stable
fixed point of Eqs. (21) and (22) with the largest value of
x2 − x1. This allows us to more easily observe which fixed
points disappear and appear as we vary ρ.

In Fig. 7 we illustrate how opinion disparity changes as
the relative sizes of the communities are changed by slightly
tuning the parameter ρ away from ρ = 1/2. In the top panel,
we plot the quantity ψ1 − ψ2 as a function of ρ and ε2.
This quantity is positive (light colors) when the state with
larger disparity has a larger value of x1, and negative (dark
colors) when it has a larger value of x2. The amount and
type of opinion disparity depend very sensitively on both
the size imbalance parameter ρ and the amount of pairwise
community structure ε2. In panels (1) and (2) we show the
one-sided opinion disparities ψ1 and ψ2 as a function of ρ for
two fixed values of ε2, corresponding to the two horizontal
lines shown in the top panel. These figures show how asym-
metric fixed points appear and disappear as the relative size
of the communities changes, giving rise to the pattern in the
top panel. The phase plots corresponding to points (a)–(d)
marked with stars in the top panel of Fig. 7 are displayed
in Figs. 8(a)–8(d), overlaid with the numerically calculated
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FIG. 7. In this plot, 〈k〉 = 〈q〉 = 20, ε3 = 0.95, γ = 1,
β2 = 0.2/〈k〉, and β3 = 4/〈q〉. The top panel illustrates the
difference ψ1 − ψ2 as a function of ρ and ε. The two solid
horizontal lines (1) and (2) correspond to the panels below, which
plot ψ1 − ψ2 for ε2 = 0.18 and ε2 = 0.5, respectively. The points
on each cross-section are at ρ = 0.506 and 0.515. ψ1 − ψ2 is an
odd function about the dashed line defined by ρ = 1/2. For large
enough ε2 as seen in cross-section (1), when community 1 is larger
than community 2 (i.e., ρ > 0.5), the opinion disparity is greater
when community 1 adopts opinion 1 than when it adopts opinion 0,
indicated by ψ1 > ψ2. In panel (2), we see that there are regimes for
small enough ε2 where opinion disparity only exists for imbalanced
community structure.

fixed points and several reference trajectories. The fixed points
are determined by first randomly infecting a fraction ρ1 of
communities 1 and ρ2 of community 2 from a grid of initial
conditions (ρ1, ρ2) ∈ {0, 0.05, . . . , 1} × {0, 0.05, . . . , 1} and
simulating the system for t = 0, . . . , 300. Each black dot rep-
resents a weighted average of the last 10 time steps for each
initial condition (more details are contained in Appendix B).
These numerical simulations show that the stable mean-field
fixed points are generally a good representation of the stable
states of the stochastic model. However, it is possible that,
even though a fixed point is stable in the mean-field descrip-
tion, finite-size effects can drive the stochastic model towards
another fixed point. This is illustrated in Fig. 8(c), which
shows five sample trajectories starting from the initial condi-
tion (x1, x2) = (0, 1). After hovering around the asymmetric

FIG. 8. The phase plots corresponding to points (a)–(d) in Fig. 7
with the fixed points (x1, x2) computed from numerical simulations
overlaid on top. Each point is generated by computing the time-
weighted average of the fraction of communities 1 and 2 infected
for different initial conditions and hypergraph realizations, described
more in Appendix B. Five sample trajectories with the initial condi-
tion of (x1, x2) = (0, 1) are shown in red in panel (c) to illustrate that
fluctuations due to finite-size effects can cause the state of the system
to leave the asymmetric fixed point.

fixed point, some of them drift towards the stable fixed point
(0,0).

The phase plots in Fig. 8 illustrate how the fixed points and
their stability change as the imbalance parameter is varied.
For small enough ε2 we see the appearance of regions where
opinion disparity cannot occur for equal community sizes,
but can occur for a small range of imbalanced community
structures [e.g., see panel (c)]. In addition, for a large enough
difference in community sizes, a majority of “1” opinions is
untenable for the smaller community. The plot of ψ1 − ψ2

with respect to ρ and ε3 is qualitatively similar, so we omit it
here. Increasing ρ from the balanced case (ρ = 0.5) increases
the size of the region where ψ2 > 0 up to a critical value, after
which it decreases. Likewise, the size of the region where
ψ1 > 0 decreases with increasing ρ. The same phenomenon
occurs for ε3 with respect to ρ.

In Fig. 8, we see close agreement between the phase dia-
gram corresponding to Eqs. (21) and (22) and the fixed points
computed from numerical simulations.

Notably, regions with strong opposite opinion disparity
types are adjacent: there are continuous trajectories in the
(ρ, ε2) phase space such that there is a discontinuous change
of sign in the quantity ψ1 − ψ2 along them. In practice
this would mean that the establishment or destruction of a
few intercommunity ties, or a small change in community
memberships, could result in a sudden change in opinion
disparity.
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IV. DISCUSSION

In this paper, we studied the effect of community structure
and higher-order interactions on the existence of opinion dis-
parity in a simple collective social contagion model. To do
so, we introduced a simple generative hypergraph model for
hypergraphs with tunable community structure. We analyzed
the dynamics of the contagion model using a mean-field ap-
proach, and we found that opinion disparity can be sustained
for a relatively large range of community structure and in-
fection rate parameters. In addition, we found that very small
changes in the community sizes can lead to dramatic changes
in the opinion disparity.

Here we discuss the limitations of our approach and pos-
sible directions for further research. First, our formalism is a
model of discrete opinions, but in many situations opinions
are better described as a continuous spectrum. In addition,
opinions may not be one-dimensional, but rather multidimen-
sional. As mentioned in Sec. II D, the contagion model we
chose is asymmetric, which leads to behavior that one may
not see if the two opinions were equivalent. Thus, our model is
more appropriate to describe opinions or behavior that need to
be sustained by group pressure, instead of describing a choice
between two symmetric opinions. In addition, we assumed
that the dynamics of the opinion formation process does not
affect the underlying structure of the hypergraph. The forma-
tion of echo chambers, however, may be the result of not only
the dynamics of opinion formation but also of the hypergraph
adapting to dissolve interactions between individuals with
dissimilar opinions [46]. For simplicity, we considered hyper-
graphs with only two communities and interactions of sizes 2
and 3. However, our models and methods could be extended
to model any number of communities and hyperedge sizes. In
addition, we only considered variants of the stochastic block
model with homogeneous degree, but empirical higher-order
systems often contain degree heterogeneity. Including this
heterogeneity in our hypergraph models could help bridge the
gap between theory and empirical data sets. To this end, it
would be useful to simulate the contagion model that we have
described on empirical data sets to see if opinion disparity
occurs, similar to the approach of Ref. [28]. Lastly, another
drawback of our approach is that we need the community la-
bels of the nodes to compute the opinion disparity, but ground
truth labels are not always available. To alleviate this, one
could complement our approach with community detection
algorithms.

Despite these limitations, our work shows that the com-
munity structure of higher-order interactions may be one of
the ingredients contributing to opinion disparity. In contrast
to models of opinion formation which require opinion ho-
mophily for opinion disparity to exist, our model only requires
the presence of higher-order interactions and sufficiently dis-
connected communities for opinion disparity to occur. Thus,
our results should be interpreted as the exploration of a com-
plementary mechanism of opinion disparity formation. Our
results also show that communities of differing sizes can mod-
ify the epidemic threshold and create regimes where opinion
disparity can occur despite being impossible for equally sized
communities.

The code and data sets supporting this work are openly
available on GitHub [47].
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APPENDIX A: AN EFFICIENT ALGORITHM
FOR SAMPLING m-HSBM HYPERGRAPHS

Simply sampling naively from the list of all possible hyper-
edges of size m and accepting them with probability p 
 1
has complexity O(Nm), which can be computationally pro-
hibitive for large m. We modify the algorithm presented in
Ref. [48] to m-uniform hypergraphs to sample from the m-
HSBM with time complexity O(m(N + |E |)).

In Sec. II C it is implicitly assumed that no multiedges
or self-loops may occur. However, given an index in the list
of all possible unique hyperedges, it can be expensive to
recover the hyperedge corresponding to that index. If instead
we allow these artifacts to occur, then it is O(m) to recover the
hyperedge of interest in contrast to iterating through all unique
combinations, which is O(mN ). Because of this modification,
in practice, we divide every probability derived in Sec. II C by
m! to account for the increase in possible hyperedges because
of multiedges and hyperedges containing self-loops. Because
allowing multiple instances of the same node changes the
number of unique neighbors, we remove these artifacts when
they occur.

Consider an m-uniform hypergraph with N nodes and a
community label gi for each node i. We denote by g the
vector of all node labels, i.e., g = [g1, . . . , gN ]. The number
of unique community labels is G, and, as in Sec. II B, Pgi1 ,...,gim

specifies the probability that nodes i1, . . . , im with community
labels gi1 , . . . , gim form a hyperedge. The function θ (g) returns
a vector of all the nodes that have community label g, and
|θ (g)| is the number of nodes with community label g. We
iterate through each entry b1, . . . , bm of the tensor P, and
for fixed group assignments of the nodes in a hyperedge, the
probability of generating a hyperedge is constant. We generate
all the hyperedges associated with these ordered community
assignments. The hyperedges are elements of the set formed
by the Cartesian product of the indices in each partition, and
the maximum index is given by the product

∏
b∈b |θ (b)|.

Our algorithm is an extension of the algorithm in Ref. [48],
and the main idea is this: instead of iterating through all possi-
ble edges and accepting an edge with probability Pgi1 ,...,gim

=
p, which is expensive when p 
 1, we simply skip the edges
that would be rejected by sampling from a geometric distri-
bution. While the current index is less than the maximum
index, we increment the index with steps s ∼ Geometric1(p),
the distribution of the number of Bernoulli trials needed for a
success. For a given index, we convert to a list of m node labels
with Algorithm 1. Because we simulate the community con-
nection probability tensor patch-by-patch, for a given patch
we specify the community to which each node belongs as an
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Algorithm 1. Return an m-hyperedge from a specified index,
given community partitions (IndexToEdge).

ordered list. The algorithm for sampling from the m-HSBM is
given in Algorithm 2.

Generating an Erdös-Rényi hypergraph is a special case
of Algorithm 2 where there is a single community [G = 1,
gi = 1, i = 1, . . . , N , |θ (g)| = N], and an efficient algorithm
is provided in Ref. [47].

APPENDIX B: NUMERICAL SIMULATIONS

We use the same Gillespie algorithm described in Ref. [49]
to simulate the hypergraph SIS model efficiently. We obtain
the community labels of the nodes from the labels specified
in our m-HPPM model. We use these labels to return the
number of nodes infected in each community with respect
to time based on the community labels of the nodes. There
are three stable states that the simulation can reach in equilib-
rium: first, the fractions of communities 1 and 2 can remain
well-separated indicating the possibility of opinion disparity;

Algorithm 2. Generating the m-uniform stochastic block model
for hypergraphs (m-HSBM).

second, the epidemic equilibrium where the average fraction
infected is identical in communities 1 and 2; and third, where
the simulation dies out and there are no infected individuals
in either community 1 or community 2. We assume that if
we start in the (x1 = 1, x2 = 0) state and the structural and
dynamical parameters admit a polarized stable state, then x1

and x2 will remain well-separated. We specify that the initial
state of every node in community 1 is infected and every node
in community 2 is susceptible, and we run the simulation until
a maximum time of tmax = 100 is reached or every node is in
the susceptible state. There is a nonzero probability, however,
that the second or third case will occur for a weakly stable
asymmetric fixed point. We heuristically tuned the simulation
time to minimize the effect of finite-size effects. We take
the absolute value of the difference between these two time
series to obtain the opinion disparity as a function of time and
perform time-weighted averaging of the resulting time series
from the last 10% of the time series (described in more detail
in Ref. [49]). For each value of ε2 and ε3, we generate a single
realization from the m-HPPM, and for each set of infectious
parameter values, we run a single simulation to preserve the
sharp transitions between regions that admit opinion disparity
and those that do not.

When generating the fixed points overlaying the phase dia-
grams in Fig. 8, we simulate the contagion dynamics for many
different initial states. We generate the initial nodal states by
iterating over a grid of initial infection densities (ρ1, ρ2) ∈
{0, 0.05, . . . , 1} × {0, 0.05, . . . , 1}. For each (ρ1, ρ2) combi-
nation, we sample uniformly at random ρ1ρN nodes from
community 1 and ρ1(1 − ρ)N nodes from community 2. We
set the state of these nodes to be infected and simulate the con-
tagion process with this initial condition up to tmax = 300. We
generate a single m-HPPM hypergraph with 〈k〉 = 〈q〉= 50,
and for each initial condition, we simulate the contagion pro-
cess. We perform time-weighted averaging on the states of the
nodes in communities 1 and 2 as described above.

APPENDIX C: CALCULATING THE STABILITY
OF FIXED POINTS

Here, we present the Jacobian, J (x1, x2), for the hypergraph
SIS model on both the planted partition model and the imbal-
anced planted partition model.

The Jacobian for the system of equations (15) and (16)
governing contagion spread on the planted partition model is
given by

J1,1 = − 1 + β̃2

2
(1 − x1)[1 + ε2]

− β̃2

2
[x1 + x2 + ε2(x1 − x2)]

+ β̃3

2
(1 − x1)[x1 + x2 + ε3(3x1 − x2)]

− β̃3

4

[
(x1 + x2)2 + ε3

(
3x2

1 − 2x1x2 − x2
2

)]
, (C1)

J1,2 = β̃2

2
(1 − x1)[1 − ε2]

+ β̃3

2
(1 − x1)[x1 + x2 − ε3(x1 + x2)]. (C2)
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J2,2 and J2,1 can be obtained by noting the symmetry of
Eqs. (15) and (16) and substituting x1 ↔ x2 into the expres-
sions for J1,1 and J1,2.

For the system of equations (21) and (22) governing
the contagion dynamics of the imbalanced planted partition
model, the Jacobian is

J1,1 = − 1 + β2〈k〉ρ(1 − x1)(1 + rρ,2 ε2)

− β2〈k〉[(1 − ρ)(1 − ε2)x2 + ρ(1 + rρ,2 ε2)x1]

+ 2β3〈q〉(1 − x1)[ρ2(1 + rρ,3 ε3)x1

+ (1 − ρ)ρ(1 − ε3)x2]

− β3〈q〉[ρ2(1 + rρ,3ε3)x2
1

+ 2ρ(1 − ρ)(1 − ε3)x1x2 + (1 − ρ)2(1 − ε3)x2
2

]
,

(C3)

J1,2 = β2〈k〉(1 − ρ)(1 − ε2)(1 − x1)

+ 2β3〈q〉(1 − ρ)ρ(1 − ε3)(1 − x1)x1

+ 2β3〈q〉(1 − ρ)2(1 − ε3)(1 − x1)x2. (C4)

J2,1 and J2,2 can be calculated by noting that Eq. (22)
may be obtained from Eq. (21) by substituting x1 ↔ x2 and
ρ ↔ (1 − ρ).
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