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Abstract

Many network contagion processes are inherently multiplex in nature, yet are often reduced

to processes on uniplex networks in analytic practice. We therefore examine how data

modeling choices can affect the predictions of contagion processes. We demonstrate that

multiplex contagion processes are not simply the union of contagion processes over their

constituent uniplex networks. We use multiplex network data from two different contexts—

(1) a behavioral network to represent their potential for infectious disease transmission

using a “simple” epidemiological model, and (2) users from online social network sites to

represent their potential for information spread using a threshold-based “complex” conta-

gion process. Our results show that contagion on multiplex data is not captured accurately

in models developed from the uniplex networks even when they are combined, and that the

nature of the differences between the (combined) uniplex and multiplex results depends on

the specific spreading process over these networks.

Introduction

Studies of contagion on networks regularly rely on data that only represent one type of rela-

tionship at a time. These sorts of data can be helpful for understanding contagion dynamics on

relationships of that type. However, when the underlying contagion processes are multiplex,

they are less well suited for understanding the ultimate extent of spread over a population and

the timescale over which these processes occur.

As an example, consider research aiming to model an epidemic of a particular sexually

transmitted infection such as human immunodeficiency virus (HIV). HIV is transmissible via

sexual contact, shared needles, and other exposures to blood or other bodily fluids. In network

terms, this means that any spread of HIV through the population requires an unbroken chain

of susceptible cases exposed to those who are currently infectious [1]. That chain of exposure

could be contained within relationships of a particular type (e.g., could be completely
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composed of sexual contacts), or could combine relationships of multiple types (i.e., sexual

and needle-sharing contacts).

In many populations, members have active contacts of both types, and they are not directly

overlapping—for example, not all needle-sharing contacts are with the same partners involving

sexual contacts [2]. In that case, studying only one type of relationship at a time could substan-

tially distort any predictions of epidemic extent within the population. As a simple example,

suppose person 1 in Fig 1 is currently infected, and we want to know the likelihood of person 4

becoming infected. If we examine only sexual relationships (denoted by solid lines), both 1

and 4 are sexually active with a single partner (2 and 3, respectively) and those direct relation-

ships would be accurately represented with data on the sexual network along with any models

using those data. However, the potential infection-carrying relationship between 2 and 3 pro-

viding an indirect route of transmission between 1 and 4 would not be observed, because it

stems from a needle-sharing relationship (dashed line). With only data on sexual relationships,

we would be underestimating 1’s likelihood of indirectly infecting 4, and even misunderstand-

ing how these nodes’ sexual partnerships contribute to that possible route of transmission. We

see that even in this simple example, only considering one tie type can lead to very different

predictions of the likelihood of infection and the resulting epidemic extent.

Similarly, there has been a recent proliferation of studies examining propagation of memes,

ideas, even voting behavior across social media sites like Facebook or Twitter [3–5]. However,

while people mix their social media usage and have non-overlapping connectivity patterns

across platforms [6], these studies overwhelmingly focus on modeling contagion over a single

platform at a time. It is reasonable to expect this approach could potentially give a limited pic-

ture of the complete contagion potential across the population, as in the sex/needle example

for STIs above. Moreover, simply increasing the coverage of the sample used will not overcome

these potential sampling biases [7]. For example, people may primarily use one platform with

their friends and family (ties between {1, 2} and {3, 4} in Fig 1), while using another with their

professional contacts (tie {2, 3} in Fig 1). In that case, studies that rely on detailed data from a

single platform at a time would miss important cross-platform linkages that are vital to under-

standing the contagion dynamics across the population of interest. Information and misinfor-

mation have been shown to spread between different social media platforms, reinforcing the

importance of understanding limitations in modeling multiplex contagion [8].

In this paper, we demonstrate the potential limitations of inference about population conta-

gion potential and timescale from networks of a single relationship type (uniplex networks),

when contagion processes realistically involve spreading over relationships of multiple types

(multiplex networks).

We proceed as follows: first, we motivate the importance of these limitations on contagion

modeling; second, we discuss the data sets and contagion processes considered; third, we dis-

cuss our approach in quantifying discrepancies in the epidemic trajectories for different

choices of data; fourth, we present numerical results validating our premise; and lastly, we dis-

cuss limitations and interpretations of this study.

Fig 1. A simple multiplex network. The line style corresponds with the relationship type. The node color represents its current status: infected (red),

susceptible (white), and unknown (black).

https://doi.org/10.1371/journal.pone.0279345.g001
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Motivation

Our central aim is to show that researchers’ ability to model contagion is strongly constrained

by choices in the data collection and representation process. Many studies consider a single

risk behavior or platform for potential disease/idea spread. This choice can result from simple

limitations of data availability, or may draw on the recognition that domain expertise often

improves our capacity to collect high quality data on particular topics (e.g., drug sharing net-

works have considerable barriers to data elicitation [9]). It is important to understand the limi-

tations introduced by these choices when predicting the extent to which behaviors or diseases

will spread. We draw on two simple case studies to explore the discrepancies between the con-

tagion extent resulting from spreading over a single relationship type compared to a model

with two different relationship types.

Many studies have presented theoretical approaches for describing contagion dynamics

over multiplex networks [10–13]. These studies have been crucial in understanding of dynam-

ics on multiplex networks, but take a fundamentally different approach compared to ours.

This study focuses not on predicting the behavior of a multiplex network, but rather exploring

the effect of the underlying data representation on the limitations that arise when modeling

contagion processes from data representing a single relationship type. This is similar to the

approach in Ref. [14] where the authors examine how well networks constructed from differ-

ent data types effectively capture transmission potential. We show that one cannot generate

accurate expectations of epidemic extent from uniplex data, even if combining results across

layers to reconstruct the multiplex reality, as an estimate of their potential combined effects—

and those discrepancies vary by the nature of the contagion process.

Data

We use two data sets to represent multiplex networks. For each, we examine (1) the entire mul-

tiplex network and (2) the multiplex network constructed with nodes that are members of the

largest connected component of the network when considering both relationship types.

The first data set comes from “Project 90” in Colorado Springs, which studied a network of

commercial sex workers, people who inject drugs, and their sex and needle-sharing partners

between 1988–1992 [15]. Here we use the complete network of 7,677 individuals representing

all respondents and the ‘risk behavior’ partners they nominated as well as the largest connected

component of 4,385 individuals. Although these data were collected over five different waves,

we aggregated them into a single network for our purposes. The other data set represents a

multiplex network of online social network site interactions among a sample of 1,672 Twitter

and Foursquare users [16] hereafter, ‘JOAAP’ as well as the largest connected component of

1,564 individuals. These data sets are available for download from Refs. [17, 18], respectively.

Summary network properties are presented in Table 1.

In the Project 90 data, we considered sexual ties as one type of tie and drug or needle-shar-

ing ties as a second tie type. When we refer to the multiplexed data, we aggregate these uniplex

layers by forming a link between two individuals if they have a sexual relationship or a drug or

needle-sharing relationship, whereas the uniplex networks are formed from each tie type

separately.

The JOAPP data, which are much higher density, representing Foursquare co-check-ins

(frequenting the same locales) as one type of tie and “follower” links on Twitter as a second

type of tie. We symmetrized the Twitter data for consistent analysis, even though these data

are inherently directional.

Analyses begin with the observed multiplex Project 90 and JOAAP data sets [15, 18]. We

then decompose each of these multiplex networks into their respective uniplex networks with
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each tie-type representing a unique network. For each data set, this produces three networks.

For the Project 90 data set, this produces (1) the multiplex composite risk behavior network,

(2a) the sexual contact uniplex network, and (2b) the needle-sharing uniplex network. For the

JOAAP data set, this produces (3) the multiplex composite online network, (4a) the Four-

square uniplex network, and (4b) the Twitter uniplex network. All analyses described below

are then conducted on each of these networks separately, and the results compared between

the multiplex networks (1 and 3) and the union of the uniplex layers (2a and 2b, and 4a and

4b, respectively).

For each data set, we extract the list of node labels by tabulating all the nodes that are con-

nected to either link type. For each type of network (uniplex or multiplex), we start with this

node list and then add the links corresponding to the desired tie types. Although in principle

one could weight the links according to the frequency of their occurrence, for simplicity, we

consider unweighted uniplex and multiplex networks, even if two ties of different types con-

nect the same node pairs, accounting for why the average degree of the two uniplex networks

do not sum to the average degree of the multiplexed network.

In our study, we use the Project 90 data as a model of a behavioral network over which epi-

demics can spread and the JOAPP data as a model of online networks for behavior adoption.

Table 1 presents descriptive statistics for each data set. In Table 1, N denotes the number of

nodes in the network and hki denotes the average degree. In the susceptible—infected conta-

gion model, the size of the connected component of which a seed node is a member deter-

mines the epidemic size. For this reason, we compute the average size of a connected

component given a seed node selected uniformly at random with the expression

hci ¼
PNc

i c2
i =N, given connected components c1; . . . ; cNc

. Likewise, for complex contagion,

the neighborhood of a randomly selected node can be predictive of how behavioral contagion

will spread and we compute the average clustering coefficient, C, as defined by the authors in

Ref. [19]. It can be helpful to measure the extent of the overlap between two layers in a multi-

plex network and there are a wide variety of ways of computing this statistic [20]. In Table 1,

we compute a slight modification of the degree of multiplexity defined in Ref. [21] and measure

the fraction of links that exist in both layers with respect to the number of links in each of the

uniplex networks as well as the multiplexed network. We denote this quantity as κ.

Table 1. Statistics of the chosen networks.

Data set N hki hci C κ

Full data set

1. Project 90 7677 1.70 2495.93 1.59 × 10−2 2.13 × 10−2

2a. Project 90—Sex 7677 0.85 466.44 7.78 × 10−4 4.26 × 10−2

2b. Project 90—Drugs 7677 1.17 1039.01 1.53 × 10−2 3.08 × 10−2

3. JOAPP 1672 45.7 1672 0.519 3.32 × 10−2

4a. JOAPP—Foursquare 1672 35.22 1672 0.613 4.32 × 10−2

4b. JOAPP—Twitter 1672 16.85 1455.58 0.123 8.99 × 10−2

Largest component of multiplexed data

1. Project 90 4375 2.46 4375 2.62 × 10−2 1.71 × 10−2

2a. Project 90—Sex 4375 1.22 816.69 1.37 × 10−3 3.46 × 10−2

2b. Project 90—Drugs 4375 1.71 819.74 2.52 × 10−2 2.46 × 10−2

3. JOAPP 1564 36.21 1564 0.302 2.66 × 10−2

4a. JOAPP—Foursquare 1564 24.67 1538.12 0.317 3.91 × 10−2

4b. JOAPP—Twitter 1564 18.02 1556.02 0.131 5.35 × 10−2

https://doi.org/10.1371/journal.pone.0279345.t001
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Contagion processes

In this study, we considered two models of contagion: a susceptible—infected (SI) model rep-

resenting a epidemiological simple contagion process, and a threshold model representing a

complex contagion process, which represent two common model forms of contagion

processes.

For the SI model, we define two states: susceptible (S) and infected (I). A susceptible node

can be infected by one of its infected neighbors with probability βΔt, where β is the infection

rate and Δt is the interval at which the node states are updated [22]. In this study, Δt = 1 week

and we update the nodes at the next time synchronously. Once a susceptible node is infected,

it will remain infected. Thus, for a connected network, given enough time, every node will

eventually become infected.

The threshold model (also known as “complex contagion”) is a common model for behav-

ior adoption on networks [23, 24]. For the threshold model, we define, as above, two states:

non-adopting (S) and adopting (I). We fix an adoption threshold τ between 0 and 1. A non-

adopting node adopts the opinion if the fraction of its neighbors who have already adopted is

larger than τ. Once a node has adopted it will not change its state to become non-adopting.

We update the opinions of all the nodes at the next time step synchronously; the threshold

model is deterministic once the initial state and threshold value have been specified. Unlike

the SI model, a contagion spreading via the threshold process may not reach the entirety of a

network, even if it is connected [25].

For both models, we select seed nodes uniformly at random to infect and this defines the

initial state of our system. We run these contagion processes for a sufficient duration to ensure

the epidemic extents have reached equilibrium.

Approach

We demonstrate how network data representation choices alter the epidemic extent and rate

of contagion spread. The data sets described above are inherently multiplex in nature and

serve as case studies in answering our central question.

We start by constructing networks from the data sets as described above. For each data set,

we produce the observed multiplex network containing both tie types, and two constituent

uniplex networks from each data set.

For each simulation run, we fix a single seed node for each of the four settings of interest.

We begin by running these respective contagion processes (the SI model on the Project 90

data set and the threshold model on the JOAPP data set) for the following: (1) the respective

multiplex network data, (2) and (3) each of the constituent uniplex layers decomposed from

those multiplex networks (as described above), and (4) the union of the infected nodes in each

layer of (2) and (3) for each time step in the simulated contagion processes. We present results

for the proportion of infected network members at each time step and final epidemic extent.

For each setting combination, we generate many realizations of these simulations to form an

ensemble of time series.

Results

For all contagion processes and each parameter value, we set the time step to a week, i.e.,

Δt = 1 and infected a single node at random initially (although we present additional results in

the Supporting Information using different numbers of seed nodes). We ran 1000 simulations

to form an ensemble for robustness.

For the SI process, we used the following infection rates (which, because Δt = 1, are also

infection probabilities): β = 1/75, 1/50, 1/30, 1/20 (simulations for wider parameter ranges in
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the Supporting Information provide a robustness check). We simulated up until a time of

tmax = 250 (i.e., 5 years; although we present longer simulations in the Supporting Information

as a robustness check). For the threshold process, we used the following adoption thresholds: τ
= 1/8, 1/10, 1/12, 1/15 (simulations for wider parameter ranges in the Supporting Information

provide a robustness check). We simulated until tmax = 30 (although we present longer simula-

tions in the Supporting Information as a robustness check).

To examine our central question, we draw the reader’s attention to comparisons between

the black and green curves in Figs 2(b) and 3(b). For the SI model, Fig 2(b) shows that the mul-

tiplex data leads to a larger epidemic extent than when we consider the union of the separate

uniplex processes. This result demonstrates that to capture the “true” potential of the conta-

gion process on the multiplex network, it is not enough to simply combine the results from

their constituent uniplex layers. As shown in Fig 1, simply considering relationships of one

type ignores how contagion can rely on the complementarities across relationships of different

types. These uniplex networks, when combined into the multiplex nature of reality, unlock

connection patterns that reach more of the population than can be accessed by the combina-

tion of the two independently. This indicates, as illustrated in Fig 1, that there is “leap-frog”

behavior occurring, where a contagion must pass through connections of alternating types to

reach certain nodes.

Looking at the histogram of final extents, we see that for the multiplexed data, by construc-

tion, the contagion will spread to the entire population given enough time. The uniplex data

Fig 2. Comparing the epidemic extent for different choices of network data for the Project 90 data set. (a) A network visualization of the Project 90 data

set. The dashed lines are not exhaustive, but illustrate that the nodes in each layer are identical. The lightly colored nodes in each layer are disconnected

from the largest connected component in that layer. One can see that each layer in this multiplex network has different contact structure. (b) The SI model

simulated on the Project 90 data. The left panel displays a plot of the epidemic extent with respect to time for the uniplex sex network (blue), uniplex drug

and needle network (red), the union of uniplex networks (green), and the multiplexed data (black). The thick lines indicate the average epidemic extent and

the thin lines are a random sample of 100 individual realizations of this model. The center column illustrates the histogram of epidemic extents for the

number of nodes solely accessed from the sex network (blue), the drug network (red), and both (magenta). The right column illustrates the distribution of

epidemic extents for the multiplexed data.

https://doi.org/10.1371/journal.pone.0279345.g002
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sets do not reach the entirety of the population indicating that the uniplex networks have com-

ponents that are smaller than those of the full multiplex networks.

For the threshold model, the situation is a bit less straightforward. In particular, here the

results are more bimodal in that the ultimate contagion extent typically either (a) stalls before

taking off at all or (b) reaches the vast majority of the population. This result reflects that both

the connectedness and the density of the network determine the epidemic extent (see for

example, Ref. [25]). This result again demonstrates that understanding contagion processes

on uniplex data representation, even when combining them, does not straightforwardly trans-

late to account for contagion on the related multiplex network. Indeed, in Fig 3(b), we see

that for each parameter value the epidemic extent for the multiplexed data may be lower than

that of both the uniplex network (τ = 1/10, 1/12), larger than that of the Twitter uniplex net-

work but smaller than that of the Foursquare uniplex network (τ = 1/15), and larger than that

of the Foursquare uniplex network but smaller than that of the Twitter uniplex network (τ =

1/15). This is likely a complicated interplay between the connectedness and density of these

networks. On the one hand, the uniplex networks are more disconnected than the multi-

plexed network. On the other hand, the multiplexed network is denser than each of the uni-

plex networks, which discourages the spread of contagion for a given threshold value. If we

set τ = 0, this removes the first of these two factors and the relations between the epidemic

extents becomes the same as for the SI model. By definition, the epidemic extent for the

union of these is larger and we see that considering both types of relationships separately

Fig 3. Comparing the epidemic extent for different choices of network data for the JOAPP data set. (a) Network visualization of the JOAPP data set. The

dashed lines are not exhaustive, but illustrate that the nodes in each layer are identical. The light colored nodes in each layer are disconnected from the

largest connected component in that layer. (b) The threshold model on the JOAPP data. As in Fig 2(b) the left column displays a plot of the epidemic extent

with respect to time for the uniplex Twitter network (blue), uniplex Foursquare network (red), the union of uniplex networks (green), and the multiplexed

data (black). The thick lines indicate the average epidemic extent and the thin lines are a random sample of 100 individual realizations of this model. The

center column illustrates the histogram of epidemic extents for the number of nodes solely accessed from the Twitter network (blue), the Foursquare

network (red), and both (magenta). The right column illustrates the distribution of epidemic extents for the multiplexed data.

https://doi.org/10.1371/journal.pone.0279345.g003
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may be a worse estimate than simply considering a single uniplex network (for example τ = 1/

10, 1/12 in Fig 3(b)).

Discussion

In this paper, we have drawn on two cases to show how modeling inherently multiplex conta-

gion processes with uniplex network representations can misrepresent the predicted fraction

of the population that a contagion process will reach. We illustrate this limitation separately

for models of epidemiological and behavioral contagion to highlight the effect of the data

representation on the resulting epidemic behavior. For simplicity, within each model we used

the same transmission parameters for each link type. Contagion on empirical networks may

have different rates of spread depending on the type of link through which contagion is trans-

mitted (e.g., needle sharing transmits most STIs more efficiently than sexual contacts). In addi-

tion, contagion spread can be modeled by different processes spreading on each layer. For

example, one might model the spread of awareness as a behavioral process on one network

layer and the spread of disease on another network layer [26].

In the case of the SI model, the multiplex epidemic extent was consistently larger than that

of the union of the two constituent uniplex layers. The magnitude of this discrepancy depends

on the extent of overlap in the connected components from each uniplex layer. The case where

each uniplex network has the same connected components will lead to the same epidemic

extent. This is a trivial case where one link type may be a proxy for another link type, which

may limit the usefulness of a multiplex representation, although is likely to be uncommon

empirically. For the threshold process, gaps remain, but differ in their nature. Whether the

union of the constituent uniplex data underestimates or overestimates the true contagion

extent depends upon the threshold levels, and these results depend on combinations of net-

work structural characteristics in ways that are important to examine further.

It may be fruitful to estimate how the magnitude of the under or overestimates seen here

differ when examining data sets with different structural features. To this end, modeling multi-

plex data sets using random network models may be helpful in predicting the quantitative dif-

ferences in the epidemic extent for different data modeling choices.

Our results offer evidence supporting our premise that uniplex data is inadequate for

modeling inherently multiplex processes. We offer this study as a cautionary tale for research-

ers modeling the spread of contagion: the choice of network data is an important assumption

baked into contagion models and should be carefully considered. As a more positive recom-

mendation, a primary takeaway of our results is that future data collection efforts should prior-

itize faithfully capturing the multiplex realities of the underlying processes intended to be

examined as in Ref. [14], rather than relying solely on data of a single type.

Supporting information

S1 Fig. Full data sets. We show that our results hold for the full (a) Project 90 and (b) JOAPP

data sets, not just the largest component of the multiplexed data. In contrast to Figs 2b and 3b

in the main text, the multiplexed data set is no longer fully connected, leading to some epi-

demic trajectories that reach very few nodes, resulting in the bimodal distribution of epidemic

extents. For the Project 90 data set, we see in S1(a) Fig that the relative epidemic extents are

preserved when compared with the epidemic extents of the largest connected component of

the multiplexed data. This is not the case with the JOAPP data set in S1(b) Fig, but as discussed

in the main text, this is to be expected due to the two competing factors, network density and

connectedness, that determine the epidemic extent for the threshold contagion process. For
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more details on these plots, see Figs 2b and 3b in the main text.

(TIF)

S2 Fig. Larger parameter ranges. We simulate each contagion process for a wider range of

parameters for (a) the Project 90 data set and (b) the JOAPP data set to verify that our results

are not dependent on the choice of parameters. For the SI model on the Project 90 data set in

S2(a) Fig, we notice the same differences in epidemic extents, albeit on different time scales.

This should be anticipated; if we plot the epidemic extent with respect to βt, the average of

each time series should be the same. For the threshold process on the JOAPP data set in S2(b)

Fig, there are parameter values where the epidemic extents are trivially the same. First, if we

choose a threshold greater than the maximum possible fraction of infected neighbors that the

network structure and number of seed nodes allow, then contagion will never occur. Second, if

the threshold is low enough and the multiplex and uniplex representations are all fully con-

nected, then the entire population will be infected no matter the data representation. For more

details on these plots, see Figs 2b and 3b in the main text.

(TIF)

S3 Fig. Different number of seeds for the Project 90 data set. We show that our results hold

for (a) 2, (b) 5, and (c) 10 seeds as well as a single seed node as presented in the main text. In

S3 Fig, we see that the relative differences in the epidemic extents are preserved. The largest

difference is that with a larger number of seed nodes, the likelihood that there is an epidemic

trajectory that spreads to very few nodes is much smaller as can be seen in the figure. For more

details on these plots, see Figs 2b and 3b in the main text.

(TIF)

S4 Fig. Different number of seeds for the JOAPP data set. We show that our results hold for

(a) 2, (b) 5, and (c) 10 seeds as well as a single seed node as presented in the main text. In S4 Fig,

we see that, as in S3 Fig, there is a smaller chance of trajectories dying out. In addition, we see

that increasing the number of seed nodes effectively raises the maximum threshold for which

the contagion will spread to the entire network (for example, τ = 1/10 in S4 Fig) and lead to triv-

ial results as discussed prior. For more details on these plots, see Figs 2b and 3b in the main text.

(TIF)

S5 Fig. Full temporal extent. We run the simulations for a long enough time to remove any

temporal censoring for (a) smaller values of β for the SI model on the Project 90 data set and

for (b) larger values of τ for the threshold model on the JOAPP data set. In S5 Fig, we see that

the epidemic extents are consistent with our results in the main text. For the SI model, this

should be expected as explained prior; rescaling time by the infection probability should yield

very similar epidemic responses in expectation. For more details on these plots, see Figs 2b

and 3b in the main text.

(TIF)
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