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Effect of time-dependent infectiousness on epidemic dynamics
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In contrast to the common assumption in epidemic models that the rate of infection between individuals is con-
stant, in reality, an individual’s viral load determines their infectiousness. We compare the average and individual
reproductive numbers and epidemic dynamics for a model incorporating time-dependent infectiousness and a
standard SIR (susceptible-infected-recovered) model for both fully mixed and category-mixed populations. We
find that the reproductive number depends only on the total infectious exposure and the largest eigenvalue of the
mixing matrix and that these two effects are independent of each other. When we compare our time-dependent
mean-field model to the SIR model with equivalent rates, the epidemic peak is advanced, and modifying the
infection rate function has a strong effect on the time dynamics of the epidemic. We also observe behavior akin
to a traveling wave as individuals transition through infectious states.
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I. INTRODUCTION

Epidemic modeling has a rich tradition in network
science [1–4] with standard models such as the SIS
(susceptible-infected-susceptible) and SIR (susceptible-
infected-recovered) models, for which rigorous mathematical
theory has been developed. There are also more complex
spatiotemporal models that more accurately capture the
dynamics of disease spread in the real world [5]. Much
interest has been devoted to the accurate prediction of
the spread of the SARS-CoV-2 pandemic [6,7] and to
answering questions such as the efficacy of different
prevention measures and the risk factors of different social
situations [8–10]. In traditional literature, the SIR model
is a canonical example of modeling the spread of disease
with total immunity. This model has common extensions
such as the SEIR (susceptible-exposed-infected-recovered)
when one wants to incorporate a latent period which captures
delays between transmission and infectiousness. With most
of these models, however, a key assumption is that an
individual’s infectivity is constant. However, we know that
an individual’s infectiousness varies over the duration of
the infection, according to their viral load [11,12]. We
define a framework to extend the SIR model by dividing
the single infectious compartment into n stages as has
been considered by Ref. [13], known as the SIK R model in
Ref. [14], and assigning each stage a different infection rate
as in Refs. [15,16]. Other approaches have been considered,
such as the message-passing approach [17,18], mapping an
individual’s viral load to an infection probability [10], and
looking at an infection density function [14,19]. We use this
approach to examine fully mixed populations and theoretical
networks constructed from category-based mixing, both static
and temporal.
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The structure of the paper is as follows. In Sec. II
we describe a framework for modeling time-dependent
infectiousness. In Sec. III we use this model to create theo-
retical predictions for the reproductive number, apply these
predictions to several common cases, and validate our theory
with numerical simulations. Last, in Sec. IV we discuss the
implications of our theory.

II. MODEL

We propose a general mean-field model to describe the
spread of an epidemic including time-dependent infectious-
ness. In the following, we will refer to this model as the viral
load (VL) model.

We consider a population of N nodes. We assume that a
node i’s intrinsic infectiousness is determined solely by the
amount of time it has been infected, τ , and its corresponding
viral load at that time, denoted vi(τ ), although other factors
may be involved as well [8]. Several studies have examined
the correspondence between an individual’s viral load and
their infectiousness [11,12], but for this study, we simply
define βi(τ ), the infectious rate function, as the rate at which
node i transmits infection having been infected for a duration
of time τ . Note that in the case where an infectious thresh-
old exists [10,20], we can express the function as βi(τ )Iτ∈δ ,
where δ = {τ | βi(τ ) � η} and η is the infectious threshold.
This infectious rate function can vary in response to many
factors such as asymptomatic versus symptomatic infection
or severity of symptoms and can be considered as being
drawn according to some distribution. For much of this study,
however, we assume that, while βi(τ ) is heterogeneous in
time, every member of the population has the same infectious
rate function, i.e., βi(τ ) = β(τ ), i = 1, . . . , N , though we
relax this assumption later. We assume that nodes start in the
susceptible compartment (S) and that an infected individual
infected for time τ infects a susceptible node with rate β(τ ).
We approximate β(τ ) by evaluating it at n discrete times τ j =
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FIG. 1. An illustration of the VL model.

j�τ , where �τ is fixed and n�τ = τR, the recovery time.
Then we divide the infectious compartment, I into n stages,
I j, j = 1, . . . , n, each with an associated infection rate β j , in
a similar manner to Refs. [13,16]. Last, nodes that transition
through all infection states accumulate in the recovered (R)
compartment.

We assume that the flow of infected individual between
subsequent infectious compartments is deterministic and that
upon entering the first infectious stage, an individual passes
through all the subsequent stages as shown in Fig. 1, meaning
that γi = 1/�τ where �τ = τR/n.

In the following, we define the mth moment of a quantity
q as 〈qm〉 = ∑N

i=1 qm
i /N when q is a discrete quantity and as

〈qm(τ )〉 = ∫ τR

0 [q(τ )]m dτ/τR when q is a continuous function
of τ .

There are many studies exploring the effect of more realis-
tic infectious behavior. In Ref. [13], the authors use the n-stage
SIK R model with constant infectiousness on a fully mixed net-
work so that the infectious waiting time is gamma-distributed.
In Ref. [16] the authors explore the SIK R model with variable
infectiousness for fully mixed networks. For both of these
models, the authors allow healing and recovery to occur at
every infectious stage. In Ref. [21] the authors explore the
SIK R link-closure model with a constant infection rate and
solely consider static networks. They simulate their model
numerically on homogeneous and Erdős-Rényi networks. In
Ref. [17] the authors consider a message-passing approach
to model time-dependent infectiousness and simulate their
results on a static network. In Ref. [18] the authors present
a non-Markovian edge-based compartment model, prove its
equivalence to the message-passing model, and describe how
other models compare to the message-passing approach. In
Refs. [13,16] the authors solely consider the fully mixed case,
and in Refs. [17,18,21] the authors solely consider static net-
works. In contrast, our approach encompasses fully mixed,
static, and temporal networks. In Refs. [13,21], though the
authors consider an SIK R model, they specify that the infec-
tious rate is constant in contrast to our model where we allow
the rate to vary over time. In addition, in Refs. [13,16,21],
they assume Markovian transitions between infectious states
in contrast to our approach, which enforces deterministic tran-
sitions between infectious states (as in Ref. [10]).

III. DERIVATION OF THE POPULATION
REPRODUCTIVE NUMBER

We derive the reproductive number for the VL model de-
scribed above that has been cast as a system of mean-field
ODEs. First, we derive the reproductive number for a fully
mixed model, and, second, we derive the reproductive number
for an arbitrary category-mixed population. We comment on

the continuum limit for both cases and derive specific closed-
form solutions for the reproductive number for a configuration
model static network and an activity model temporal network.

A. Fully mixed population

Consider a fully mixed population of N individuals and an
infectious rate function, β(τ ). In our formalism, we denote
the fraction of the population in the susceptible, jth infec-
tious stage, and the recovered stage as S, I j, j = 1, . . . n,
and R, respectively, and note that S + ∑n

j=1 I j + R = 1 by
conservation. Assuming that an individual’s infection status
is independent of the infection status of its neighbors, as done
in Ref. [16], we can write the following system of mean-field
equations as

dS

dt
= −S

n∑
j=1

β j I j, (1a)

dI1

dt
= − I1

�τ
+ S

n∑
j=1

β j I j, (1b)

dIj

dt
= I j−1 − I j

�τ
, j = 2, . . . , n, (1c)

dR

dt
= In

�τ
. (1d)

By construction, an infected node will always transition
through all the infectious states until it reaches the recovered
state. However, we are not interested in whether infected
nodes transition through all the states, but rather whether
susceptible nodes become infected. In Ref. [22], the authors
introduce the notion of a next generation matrix which decom-
poses the linearized system into infectious transmissions, T ,
and noninfectious transitions, �, where transmissions move
susceptible nodes to infected compartments and transitions
move infected nodes to other infectious states. As done in
Ref. [22], we exclude the susceptible and recovered states.
The linearized system can be written as

I′ = 1

�τ

⎛
⎜⎜⎜⎜⎜⎝

−1 + β1�τ β2�τ . . . . . . βn�τ

1 −1 0 . . . 0

0 1 −1 . . .
...

...
. . .

. . .
. . . 0

0 . . . 0 1 −1

⎞
⎟⎟⎟⎟⎟⎠

I,

where I = (I1, . . . , In)T . We split the matrix into trans-
missions and transitions and, according to Ref. [22], the
reproductive number R0 is given by ρ(−T �−1). For the fully
mixed case, this evaluates to

R0 =
n∑

i=1

βi�τ, (2)

which matches the value found in Ref. [16].
This result indicates that any infectious rate function that

has the same total infectiousness or exposure yields the same
reproductive number, regardless of the particular function.
This, however, does not hold for the timescale on which the
epidemic spreads, as we will see later.
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B. Discrete category-mixed population

Now we consider a population with N individuals, each
of which belong to a category ci, i = 1, . . . , nc. These mixing
categories can encode many different characteristics such as
degree-based mixing [23], age mixing [24], spatial metapopu-
lation mixing [5], mixing due to travel, and many other types
of mixing.

We denote the probability that subpopulations ci and c j

interact with each other as p(ci, c j ) and the probability that
a node belongs to category i as p(ci ). We discretize the infec-
tious states not only by the progression of the infection, but
by the category to which that individual belongs as well. This
model has (n + 2)nc states: nc susceptible states, Sc1 , . . . , Scnc ;
nnc susceptible states, Ic1

1 , . . . , Icnc
1 , . . . , Ic1

n , . . . , Icnc
n ; and nc

recovered states, R1, . . . , Rnc . Then the mean-field model be-
comes for each category c

dSc

dt
= −Sc

nc∑
i=1

n∑
j=1

p(c, ci )p(ci )β j I
ci
j , (3a)

dIc
1

dt
= − Ic

1

�τ
+ Sc

nc∑
i=1

n∑
j=1

p(c, ci )p(ci )β j I
ci
j , (3b)

dIc
j

dt
= Ic

j−1 − Ic
j

�τ
, j = 2, . . . , n, (3c)

dRc

dt
= Ic

n

�τ
. (3d)

The linearized ODE is the following block-matrix system
of equations:

I′ = 1

�τ

⎛
⎜⎜⎜⎜⎜⎝

−I + β1�τP β2�τP . . . . . . βn�τP
I −I 0 . . . 0

0 I −I . . .
...

...
. . .

. . .
. . . 0

0 . . . 0 I −Iτ

⎞
⎟⎟⎟⎟⎟⎠

I,

where

P =
⎛
⎝ p(c1, c1)p(c1) . . . p(c1, cnc )p(cnc )

...
. . .

...

p(cnc , c1)p(c1) . . . βi p(cnc , cnc )p(cnc )

⎞
⎠,

I = (Ic1
1 , . . . , IcC nc

1 , . . . , Ic1
n , . . . , Icnc

n )T , and I is the identity
matrix.

Splitting the matrix into transmissions and transitions, the
next-generation matrix is

−T �−1 =

⎛
⎜⎜⎝

P
∑n

i=1 βi�τ P
∑n

i=2 βi�τ . . . Pβn�τ

0 . . . . . . 0
...

. . .
. . .

...

0 . . . . . . 0

⎞
⎟⎟⎠.

(4)

Then the reproductive number evaluates to

R0 = ρ(P)
n∑

i=1

βi�τ, (5)

which indicates that the epidemic threshold depends on both
the infectious exposure and the matrix of mixing probabilities
and that these two quantities are independent.

C. The continuum limit

For each case described prior, it is natural to want to
take the limit as the number of infectious compartments ap-
proaches infinity and �τ → 0. For the fully mixed case, the
reproductive number becomes

R0 =
∫ τR

0
β(τ ) dτ, (6)

and similarly, for category-based mixing, it is

R0 = ρ(P)
∫ τR

0
β(τ ) dτ. (7)

Alternatively, we can treat τ as a continuous quantity and
track the infectiousness, I (t, τ ), as a function of the overall
time and how long an individual has been infected. When τ is
continuous, �τ → 0 and the finite difference (I j−1 − I j )/�τ

in Eqs. (1c) and (3c) becomes a derivative with respect to τ .
With these assumptions, our ODE model can be expressed as
the transport equation with boundary conditions handling the
infection and recovery. For the fully mixed case, this is

∂I (t, τ )

∂t
= −∂I (t, τ )

∂τ
, (8a)

I (t, 0) = S
∫ τR

0
β(τ )I (t, τ ) dτ, (8b)

S = 1 −
∫ τR

0
I (t, τ ) dτ −

∫ t

0

∂I (t, τ )

∂τ

∣∣∣∣
τ=τR

dt,

(8c)

I (t, τR) = 0. (8d)

The transport equation admits traveling wave solutions,
and this perspective lends physical interpretation to our
model; an infected individual is transported through the in-
fectious stages, and the boundaries merely introduce new
individuals into this transport process and remove recovered
individuals at the other boundary.

Because our approach approximates the infectious rate
function with discrete infectious compartments, we perform
numerical experiments to analyze the number of states at
which we can expect the mean-field ODE model to reasonably
approximate the continuous rate function. For a small number
of states, the discretized values of the infectious rate function
fluctuate, leading to nonmonotone and nonsmooth trends, so
we look only at the VL model with more than four infectious
states. As the number of infectious states is increased, the
epidemic dynamics converge to that of the continuous VL
model with a continuous infectious rate function. From Fig. 2
approximately 100 infectious states are necessary to capture
key features of the epidemic response.

D. Examples

In the following, we apply our category-mixing framework
to two cases, a static degree-based configuration model and a
temporal activity-based model.
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FIG. 2. A plot showing how the number of infectious states af-
fects (a) the time at which the infectious peak occurs and (b) the
magnitude of the infectious peak for the VL model in the fully
mixed case. We use two different infectious rate functions described
in Sec. III F and show the constant value of the SIR model (one
infectious stage) as a reference. For every data point, R0 = 3.

1. Configuration model

Consider a network of size N with a degree sequence
k = (k1, . . . , kN )T and nodes connected by links at random,
which specifies the configuration model (described more
in Ref. [25]). Networks generated with the configuration
model may have a non-negligible number of self-loops and
multi-edges in the infinite size limit [26], leading to corre-
lated simple networks. In this study, however, we consider
a bounded degree distribution, and so we can assume the
configuration model to be uncorrelated for large enough N .
For the standard SIR model on a configuration model net-
work, the reproductive number is R0 = β〈k2〉/(γ 〈k〉) [1]. We
assume that a node’s degree completely specifies its dynamic
behavior, which ignores effects from a node’s other charac-
teristics. From the degree sequence k, we can compute the
discrete probability distribution p(k) = N (k)/N , where N (k)
is the number of nodes in the degree sequence that have degree
k, and the list of unique degrees in the degree sequence, ku.
From our general formalism in Sec. III B, the degree mixing
matrix is

P = 1

〈k〉 (kup)T ku. (9)

where kup = (k1 p(1), . . . , kmax p(kmax))T and ku =
(k1, . . . , kmax)T . The largest eigenvalue of this matrix is
〈k2〉/〈k〉, and so the reproductive number is

R0 = 〈k2〉
〈k〉

∫ τR

0
β(τ ) dτ. (10)

Setting γ = 1/τR and β = 〈β(τ )〉 = ∫ τR

0 β(τ ) dτ/τR for
the SIR model yields the reproductive numbers derived in
Ref. [1].

2. Activity model

Our category-based framework applies not only to static
contact structures, but to temporal networks as well. We con-
sider the activity model first presented in Ref. [27]. Given a
temporal network of size N , suppose that each node i has an
activity rate ai, which denotes the probability per unit time
that the node is active. At each discrete time, each node is
either active or idle, and each active node forms m connections
with other nodes, active or inactive. Unlike degrees which are

discrete for an unweighted network, these activity rates are
continuous, and to use our category-based mixing framework,
we assume that we can bin these rates into discrete categories,
ai, i = 1, . . . , na and later take the continuum limit as before.
We denote the probability that a node has an activity rate ai

as p(ai ). Then the probability that nodes with activity rates ai

and a j are connected at any given time is (ai + a j ) m
N and the

time-averaged mixing matrix is

Pi j = m(ai + a j )

N
p(a j ),

which can be written P = 1bT + cpT where b =
(m a1 p(a1), . . . , m ana p(ana ))T , c = (m a1, . . . , mana )T ,
and p = (p(a1), . . . , p(ana ))T . Observing that this is a rank-2
matrix, the analytical solution for the Perron-Frobenius
eigenvalue is (m〈a〉 + m

√
〈a2〉) and

R0 = (m〈a〉 + m
√

〈a2〉)
∫ τR

0
β(τ ) dτ. (11)

In Ref. [27], they derive the epidemic threshold for the ac-
tivity model as β/γ = 2〈a〉/(〈a〉 +

√
〈a2〉). As before, setting

γ = 1/τR and β = 〈k〉〈β(τ )〉 = 2m〈a〉〈β(τ )〉 yields the same
result.

E. Individual variation in the infectious rate function

In Ref. [28] the authors consider heterogeneous suscepti-
bility and recovery rate for the SIR model. Similarly, we now
relax the assumption that the infectious rate function is the
same for every individual. We extend our results in Sec. III B
for a distribution of infectious rate functions over the popula-
tion. In our analysis, we assume that the particular infectious
rate function is distributed independently of any other nodal
characteristic such as its degree. We denote pb(b) as the frac-
tion of the population with an infectious rate function of βb(τ )
and an associated recovery time of τRb , where the number of
unique infectious rate functions is nb. We enforce that the
number of infectious states regardless of recovery time is n
so the time between infectious compartments is n�τb = τRb .
We define the discretized values βi(τ j ) = βi( j�τi) as β i

j and
denote the jth infectious stage with infectious rate function
βb(τ ) and category c as Ib,c

j . Then the mean-field equations
become

dSb,c

dt
= −Sb,c

nb∑
i=1

nc∑
j=1

n∑
k=1

pb(bi )β
bi
k p(c, c j )p(c j )I

bi,c j

k ,

(12a)

dIb,c
1

dt
= − Ib,c

1

�τ
+ Sb,c

nb∑
i=1

nc∑
j=1

n∑
k=1

pb(bi )

×β
bi
k p(c, c j )p(c j )I

bi,c j

k , (12b)

dIb,c
j

dt
= Ib,c

j−1 − Ib,c
j

�τ
, j = 2, . . . , n, (12c)

dRb,c

dt
= Ib,c

n

�τ
. (12d)

Linearizing these equations, we obtain I′ = AI, where A =
� + T . � and T are each n × n block matrices of size ncnb ×
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ncnb with blocks of size nc × nc:

�i, j =
{

diag(I/�τ1, . . . , I�τnb ), i = j
diag(−I/�τ1, . . . ,−I�τnb ), i = j + 1

and

Ti, j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎝

pb(b1)β1
j P . . . p(bnc )βnb

j P
...

. . .
...

pb(b1)β1
j P . . . p(bnb )βnb

j P

⎞
⎟⎠, i = 1

0, else.

Then the reproductive number (the maximal eigenvalue of
−T �−1) is

R0 = ρ(P)
∑

b

pb(b)
n∑

j=1

βb
j �τb.

As n → ∞, �τb → 0 for every b, and we obtain

R0 = ρ(P)
∑

b

pb(b)
∫ τRb

0
βb(τ ) dτ, (13)

which is the value obtained for the category-mixed case
with the key difference that the exposure is now the average
exposure with respect to the distribution of infectious rate
functions.

F. Numerical experiments

We compare the time dynamics of the SIR model with
that of the VL model with different infectious rate functions.
For the following figures, we fixed N = 104, R0 = 3, τR = 21
days, and arg maxτ β(τ ) = 4 days, unless otherwise noted.
We considered the configuration model with a power-law
degree distribution p(k) ∝ k−3 on [10,1000] and the activ-
ity model with activity rates p(a) ∝ k−3 on [0.01, 1], m =
10, and �t = 1. We used the following contagion models:
the VL model with β� (τ ) ∝ τ exp(τ/4) as in Ref. [12], the
VL model with a constant-valued infectious rate function,
βconst (τ ) = 〈β� (τ )〉, and the SIR model with a single infec-
tious rate of β = 〈β� (τ )〉 for the configuration model and β =
2m〈a〉〈β� (τ )〉 for the activity model. These relations were
chosen such that the reproductive numbers are the same for
each infection model.

We simulated all the contagion models described in dis-
crete time with �t = �τ = 1. We simulated the SIR model
as a discrete time Markov process using the parameters γ =
1/τR and β = 〈β� (τ )〉 and β = 2m〈a〉〈β� (τ )〉 for the config-
uration and activity models, respectively. For the VL model,
we store the time at which node i has been infected as t∗

i and
at time t , the rate of infection of that node is β(t − t∗

i ), for
example, and when t − t∗

i � τR, the node recovers. When sim-
ulating on temporal networks, we store the temporal network
as an array, where each entry is a static network corresponding
to a particular snapshot in time.

From Fig. 3 we see that the peak of the SIR model is
delayed relative to both viral load models, and for the static
case, the epidemic peak is significantly less pronounced.
We comment that the VL model fundamentally changes the
timescale of the epidemic when compared to the SIR model.
Not all infectious compartments are created equal, however;

FIG. 3. Time response of the fraction of infected individuals
for different contagion models for (a) the configuration model and
(b) the activity model. For both (a) and (b), the dash-dot, dashed,
and solid lines indicate the VL model with β� (τ ) ∝ τ exp(τ/4), the
VL model with βconst (τ ) = 〈β� (τ )〉, and the SIR model with a single
infection rate of β respectively. β = 〈β� (τ )〉 and β = 2m〈a〉〈β� (τ )〉
for the configuration and activity models, respectively. R0 = 3 for
each infection curve.

someone at their peak infectiousness contributes much more
to the spread of an epidemic than someone who has just gotten
infected or almost recovered. For this reason, we plot the num-
ber of individuals in each infectious stage over time in Fig. 4.
We now relax the assumption that β� (τ ) and τR are identical
for each member of the population and let arg maxτ β(τ ) ∼
Uniform(2, 6) and τR ∼ Uniform(16, 26) similar to Ref. [10].
At given times t , we plot the number of individuals as a
function of the infectious duration τi = t − t∗

i and t .
We see traveling wave behavior as in Fig. 4 described in

Sec. III C for both static and temporal networks. The ampli-
tude of this wave varies in response to the introduction of new
infected individuals, but the distribution shows a clear transi-
tion to the latter infectious stages as the epidemic progresses.
This behavior is corroborated by the three normalized vertical
cross sections, showing the probability distribution at selected
times. We notice that, despite identical values of βi(τ ) and τRi

for every node, the temporal behavior is different for static and
temporal networks. For the temporal network, it seems evident
that individuals with the longest infection duration seem to
be driving the epidemic based on the minimal decrease in
individuals for large τ in comparison to the static network
case.

We also plot the epidemic extent for different values of
R0 in Fig. 5 to validate our predictions of the reproductive
number. For each data point, we averaged the results of 100
simulations but used the same network realization for all sim-
ulations for both the configuration and activity models. We
ran each simulation until there were no longer any infected
individuals.

We see that for both static and temporal networks, the
predictions from our theory do as well as the predictions for
the SIR model in Refs. [1] and [27]. The gradual transition is
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FIG. 4. The number of individuals infected for duration τ at time t for the configuration model (top) and the activity model (middle). The
line plots (bottom) denote the probability distribution of τ at times 40, 60, and 80, which correspond to normalized vertical cross sections of
I (t, τ ).

due to the heterogeneity of the networks and agrees with prior
results on power-law networks [28].

IV. DISCUSSION

In our analysis, we theoretically derived and numerically
validated predictions of the population reproductive number
for static and temporal networks for a contagion model ac-
counting for time-dependent infectiousness. We see that time-
dependent infectiousness causes a fundamental change in the
time dynamics compared to the dynamics of the SIR model,
despite an epidemic threshold matching classical theory.

Although time-dependent infectiousness does not affect
predictions on whether an epidemic will initially grow or die
out, it has strong implications how the epidemic progresses in
time. In the continuum limit, the VL model can be written
as the transport equation PDE with an infectious boundary
condition, which indicates that distribution of τ progresses in
time like a traveling wave, and this prediction is validated with
numerical simulations.

In this study, we have considered only the population
reproductive number, though it is well known that merely
studying the population reproductive number without ex-
amining the heterogeneity in the number of secondary
infections leaves out key information [8]. Superspreading
events are the result of this stochasticity and can often be
responsible for the transmission of an epidemic. The VL

framework could be used to model the distribution of
secondary infections resulting from a combination of contact-
based and infectiousness-based heterogeneity.

All code used in this study can be found at [29].

FIG. 5. The epidemic extent plotted as a function of the predicted
reproductive number for different contagion models for (a) the con-
figuration model and (b) the activity model.
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