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ABSTRACT

The dynamics of network social contagion processes such as opinion formation and epidemic spreading are often mediated by interactions
between multiple nodes. Previous results have shown that these higher-order interactions can profoundly modify the dynamics of contagion
processes, resulting in bistability, hysteresis, and explosive transitions. In this paper, we present and analyze a hyperdegree-based mean-field
description of the dynamics of the susceptible–infected–susceptible model on hypergraphs, i.e., networks with higher-order interactions, and
illustrate its applicability with the example of a hypergraph where contagion is mediated by both links (pairwise interactions) and triangles
(three-way interactions). We consider various models for the organization of link and triangle structures and different mechanisms of higher-
order contagion and healing. We find that explosive transitions can be suppressed by heterogeneity in the link degree distribution when links
and triangles are chosen independently or when link and triangle connections are positively correlated when compared to the uncorrelated
case. We verify these results with microscopic simulations of the contagion process and with analytic predictions derived from the mean-field
model. Our results show that the structure of higher-order interactions can have important effects on contagion processes on hypergraphs.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0020034

Including group interactions in network models of contagion
can significantly affect epidemic behavior. By studying the sus-
ceptible–infected–susceptible epidemic model on networks with
higher-order interactions, we observe that for certain parame-
ters, there is a bistable regime, where above a critical number
of infected individuals, the contagion spreads until it becomes
an epidemic, and below this critical number, the epidemic dies
out. We find that heterogeneity in the individual and group con-
tact structure of a social network determines the existence of
such tipping point events and derive conditions for their appear-
ance. Last, we comment on how three group contagion mech-
anisms—collective contagion, infection by individuals, and the
“hipster effect”—affect the onset of epidemics and the existence
of bistability.

I. INTRODUCTION

The study of contagion processes is a fundamental problem
in network science, with applications including epidemics,1–7 social
media,8 opinion formation,9 idea diffusion,10,11 sudden changes in

social convention,12,13 and many more. Contagion processes can be
of many types, ranging from discrete-state models such as the sus-
ceptible–infected–susceptible (SIS) model, to continuous models of
opinion formation, to realistic models of disease such as those cur-
rently used to model the spread of COVID-19.14,15 Modeling the
dynamics of such processes on pairwise interaction networks has
been a hallmark of network science, providing many insights into
the effect of network structures on the propagation of disease and
information. Recently, the role of complex contagion mechanisms
(i.e., contagion processes that cannot be described solely by pairwise
interactions) has received much attention.16 It has been shown that
higher-order interactions in networks (i.e., interactions involving
multiple nodes) can have profound effects on dynamical network
processes17 such as opinion formation,18 synchronization,19–21 and
population dynamics.22 Efforts to map higher-order interactions in
real-world networks have an uncovered rich structure,23 which is
only now starting to be appreciated. In the context of contagion
processes, it was recently shown24 that the addition of higher-order
interactions to the SIS epidemic model on Erdös–Rényi networks
results in bistability, hysteresis, and explosive transitions to an
endemic disease state (see also Refs. 25–28). The simplicial SIS
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model has also been extended to scale-free uniform hypergraphs.29

The fact that the network SIS model with more general higher-
order interactions results in bistability has been proven rigorously
in Ref. 26. However, so far, there is no general theory explaining
how heterogeneity and correlations in the structure of higher-order
interactions affect the onset of bistability.

In this paper, we present and analyze a degree-based mean-
field description of the dynamics of the SIS model in networks with
higher-order interactions. To describe higher-order interactions, we
consider the SIS model on a hypergraph, formed by a set of nodes
and a set of edges of multiple sizes (so that edges of size larger than
two represent higher-order interactions). Our formulation allows us
to consider heterogeneous structures in the organization of the edges
of a given size and correlations between the structure of edges of
different sizes. Using the illustrative case of networks with edges of
sizes 2 and 3, we derive conditions for the appearance of bistabil-
ity and hysteresis in terms of moments of the degree distribution of
the pairwise interaction network. We find that the onset of bistabil-
ity and hysteresis can be suppressed by heterogeneity in the pairwise
interaction network and promoted by positive correlations between
the number of pairwise and higher-order interactions a node has.
We also consider the effect of healing by higher-order interactions
(a “hipster effect”).

The structure of the paper is as follows. In Sec. II, we present
our hypergraph and contagion models. In Sec. III, we derive a
mean-field description of the model and apply it to various illus-
trative cases. In Sec. IV, we study how model parameters affect the
onset of bistability. Finally, we discuss our results and present our
conclusions in Sec. V.

II. MODEL

In this section, we present our hypergraph and contagion mod-
els. Our model consists of SIS contagion spreading on a hypergraph
via pairwise and higher-order interactions. While we focus on the
SIS epidemic model, we note that our formalism could be extended
to other models. In the context of epidemic spreading, pairwise
interactions could represent, for example, face-to-face interactions
leading to contagion via viral droplets, while higher-order interac-
tions could represent, for example, contagion via the shared spaces
by a group. In the context of opinion dynamics, higher-order conta-
gion could model, for example, a majority-vote process common in
caucusing. In the following, we provide details about the hypergraph
model representing the higher-order interactions and the contagion
models that we consider.

A. Hypergraph model

We consider a population of N nodes labeled i = 1, 2, . . . , N
coupled via undirected hyperedges of sizes m = 2, 3, . . . , M, where
a hyperedge of size m is a set of m nodes, {i1, i2, . . . , im}. We define
the mth order degree of node i, k(m)

i , as the number of hyperedges of
size m to which the node belongs, and its hyperdegree as the vector
ki = [k(2)

i , k(3)
i , . . . , k(M)

i ]. The 2nd order degree of a node cor-
responds to the number of pairwise connections of the node,
while higher-order degrees measure the node’s participation in
hyperedges of larger sizes. Figure 1 illustrates a hypergraph with

FIG. 1. Illustration of a hypergraph. Infected nodes (red) infect a healthy node
(gray) via hyperedges of sizes 2 and 3 with rates β2 and β3, respectively.

hyperedges of sizes 2 and 3, which, for simplicity, we will henceforth
denote as links and triangles, respectively.

Extending degree-based descriptions of epidemic spreading on
networks,30,31 we will develop a mean-field theory for the propa-
gation of epidemics based on the assumption that nodes with the
same hyperdegree have the same statistical properties. For this pur-
pose, we assume that the number of nodes with the hyperdegree
k, P(k), is given and that the probability that nodes with hyper-
degrees k1, k2,. . . , km belong to a hyperedge of size m is given
by fm(k1, k2, . . . , km). This assumes that the statistical structure of
the network is completely described by the hyperdegree distribu-
tion P(k) and the connection probabilities fm(k1, k2, . . . , km). While
this restriction rules out the possibility of assortative mixing by
other node properties, it is straightforward to extend our formal-
ism to include other node variables. Note that counting the num-
ber of hyperedges of size m in two different ways, the connection
probabilities must be normalized such that

1

m!

∑

k1 ,...,km

P(k1), . . . , P(km)fm(k1, k2, . . . , km) =
1

m

∑

k

k(m)P(k).

(1)

For example, for the configuration model for networks without
higher-order interactions (i.e., only hyperedges of size 2, M = 2),
the hyperdegree of a node is just the number of links, k = k, con-
necting that node to other nodes and the connection probability is
f2(k, k′) = kk′/(N〈k〉), where 〈k〉 =

∑N
i=1 ki/N =

∑
k kP(k)/N. For

networks with hyperedges of sizes 2 and 3, f3(k1, k2, k3) is the prob-
ability that three nodes with degrees k1, k2, and k3 are connected
by a hyperedge of size 3. The configuration model for hypergraphs
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and its associated statistical properties has been studied in Refs. 32
and 33.

This framework allows us to study networks with hetero-
geneously distributed higher-order interactions and correlations
between nodal degrees of different orders. In addition, it allows us
to treat the case in which nodes belonging to a triangle are not
necessarily connected by links, as is assumed in simplicial complex
models.24 We will study how the structure of higher-order interac-
tions modifies some of the properties of epidemic spreading on net-
works with exclusively pairwise interactions (i.e., hyperedges of size
2 only), on which epidemic spreading has been studied extensively.1

B. Contagion model

Now, we describe the contagion models we will study. As men-
tioned above, we will focus on the SIS model, but other epidemic
models could be treated using the same formalism. We assume that
at any given time t ≥ 0, each node can be in either the susceptible
(S) or infected (I) state. Infected nodes heal and become susceptible
again at rate γ . Now, we specify how hyperedges mediate the conta-
gion process. In general, the probability of contagion by a hyperedge
could be a function of the number of infected nodes in the hyperedge
(e.g., as in Ref. 27). Here, we will consider the two extreme cases
where contagion occurs if all the other members of the hyperedge
are infected or if at least one member of the hyperedge is infected.
More precisely, in the collective contagion case, a susceptible node
that belongs to a hyperedge of size m gets infected at rate βm if all
the other members of the hyperedge are infected; in the individ-
ual contagion case, the node gets infected at rate βm if at least one
member is infected. While we will analyze these two cases only, in
principle, one could treat the case in which at least j other nodes of
the hyperedge need to be infected for contagion to occur using the
techniques presented below. This case corresponds to a quorum of
size j, and there is evidence for such effects in collective behavior.34,35

For hyperedges of size 2, i.e., links, both cases reduce to the usual
contagion via pairwise interactions. The social contagion model of
Ref. 24 corresponds to the collective contagion case. The contagion
processes are illustrated in Fig. 1 for hyperedges of sizes 2 and 3.
Table I summarizes the notation and variables used.

TABLE I. Relevant notation.

Variable Definition

N Number of nodes
k(m) Number of hyperedges of size m a node

belongs to
k = [k(2), . . . , k(M)] Hyperdegree
P(k) Number of nodes with hyperdegree k
γ Rate of healing
βm Rate of infection by a hyperedge of size m
fm(k1, k2, . . . , km) Probability that m nodes form a hyperedge

of size m
xk Fraction of nodes with hyperdegree k that

are infected

III. MEAN-FIELD ANALYSIS

In this section, we present a mean-field analysis of the
epidemic dynamics on a network specified by the hyperdegree
distribution P(k)/N and the hyperedge connection probabilities
fm(k1, k2, . . . , km). Assuming that all nodes with the same hyperde-
gree behave similarly, we focus on xk, the fraction of nodes with
hyperdegree k that are infected. The mean-field equation describing
the evolution of xk is

dxk

dt
= −γ xk + (1 − xk)

M∑

m=2

βm

1

(m − 1)!

×
∑

k1 ,...,km−1

m−1∏

l=1

P(kl)fm(k, k1, . . . , km−1)G(xk1 , . . . , xkm−1),

(2)

G(xk1 , . . . , xkm−1) =

{∏m−1
l=1 xkl

, collective contagion,

1 −
∏m−1

l=1 (1 − xkl
), individual contagion.

(3)

The first term on the right-hand side of Eq. (2) corresponds
to healing at rate γ and the second term accounts for infec-
tion by hyperedges. The number of hyperedges of size m that
can pass an infection to a node with hyperdegree k is calculated
by considering all the possible hyperdegrees of the other m − 1
nodes participating in the hyperedge (k, k1, . . . , km−1), counting
how many such combinations there are not counting permuta-
tions [P(k1), . . . , P(km−1)/(m − 1)!], calculating what fraction of
such combinations forms a hyperedge with the node in consid-
eration [fm(xk, xk1 , . . . , xkm−1)], multiplying by the probability that
the hyperedge can transmit the infection [G(xk1 , . . . , xkm−1)], and
summing over all hyperdegree combinations. The probability that
the hyperedge can transmit the infection, given by (3), depends on
whether the collective contagion or individual contagion model is
assumed. Note that the form for G taken above, and the mean-field
treatment in general, assumes that the states of nodes are indepen-
dent. A better approximation that includes correlations between
connected nodes has been implemented in Ref. 28 for the case of
unstructured hyperedges of sizes 2 and 3, leading to an improved
quantitative agreement with the results of numerical simulations.
Since our interest is in the effects of higher-order structures on qual-
itative aspects of the epidemic dynamics, we will use the mean-field
approximation in Eq. (2). A similar mean-field equation for a node-
based description of the contagion process was recently formulated
in Ref. 26. In the following, we will apply the mean-field description
to illustrative cases.

A. Hyperedges of sizes 2 and 3 with collective

contagion

Here, we focus on the case where the hyperedge sizes are either
2 or 3; i.e., M = 3. This corresponds to a network like in Fig. 1, with
hyperedges of size 2 (links) and 3 (triangles). For simplicity, here,
we denote the number of links per node as k, i.e., k = k(2), and the
number of triangles a node belongs to by q, i.e., q = k(3). In addition,
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we will consider the case where the connection probabilities depend
only on the node links, i.e., fm(k, k1, . . . , km−1) = fm(k, k1, . . . , km−1).
With these assumptions and using the collective contagion rule in
Eqs. (3) and (2) becomes

dxk,q

dt
= −γ xk,q + (1 − xk,q)β2

∑

k1 ,q1

P(k1, q1)f2(k, k1)xk1 ,q1

+ (1 − xk,q)
β3

2

∑

k1 ,q1 ,k2 ,q2

P(k1, q1)P(k2, q2)f3(k, k1, k2)xk1 ,q1 xk2 ,q2 ,

(4)

where the first term on the right-hand side represents healing,
the second represents contagion by links, and the third represents
contagion by triangles.

Since the connection probabilities do not depend on q, we can
reduce the dynamics to the fraction of nodes with degree k that are
infected,

xk =

∑
q P(k, q)xk,q

P(k)
, (5)

where P(k) =
∑

q P(k, q) is the number of nodes with degree k. Mul-
tiplying Eq. (4) by P(k, q), summing over q and dividing by P(k), we
obtain

dxk

dt
= −γ xk + (1 − xk)β2

∑

k1

P(k1)f2(k, k1)xk1

+ (1 − xk)
β3

2

∑

k1 ,k2

P(k1)P(k2)f3(k, k1, k2)xk1xk2 . (6)

For the link connection probability f2(k, k1), we will take f2(k, k1)

= kk1/(N〈k〉), which corresponds to nodes being connected com-
pletely at random according to their degree as in the configuration
model. For the triangle connection probability f3, we will consider
two cases: the uncorrelated case and the degree-correlated case. In
the degree-correlated case, we assume that the connection proba-
bility is given by f3(k, k1, k2) = 2kk1k2/(N〈k〉)2 so that nodes that
have a higher number of links also belong to more triangles. In
the uncorrelated case, we assume instead that f3(k, k1, k2) = 2〈k〉/N2

so that triangles are formed independent of the nodal degrees. The
normalization is chosen using Eq. (1) so that the mean number of
triangles per node, 〈q〉 =

∑N
i=1 k(3)

i /N, in each case is equal to 〈k〉.
We note that the model for triangle formation in Ref. 24 corresponds
to the uncorrelated case. We can choose the mean triangle degree
independent of the mean network degree by scaling f3(k, k1, k2) by
〈q〉/〈k〉, but for simplicity, we assume 〈q〉 = 〈k〉. Figure 2 illustrates
the difference between the two cases in a small network, where in
the degree-correlated case, the triangles cluster around nodes with a
high pairwise degree and in the uncorrelated case, the triangles are
distributed uniformly at random on the network.

We can also specify the distribution of triangle degrees by
defining f2(q, q1) and f3(q, q1, q2) and then reducing Eq. (4) by
multiplying by P(k, q), dividing by P(q), and summing over k to
reduce the dynamics to the fraction of infected nodes with triangle
degree q. For the triangle connection probability, we take f3(q, q1, q2)

= 2qq1q2/(N〈q〉)2, which corresponds to three nodes being con-
nected at random according to the configuration model for

FIG. 2. Schematic illustration of the degree-correlated and uncorrelated cases.
In the degree-correlated case (left), nodes with more links are more likely to
belong to a triangle. In the uncorrelated case (right), triangles connect nodes with
a probability independent of their degree.

triangles.32 For the pairwise links, we define the degree-correlated
and uncorrelated cases as before, where in the degree-correlated
case, f2(q, q1) = qq1/(N〈q〉) and for the uncorrelated case,
f2(q, q1) = 〈q〉/N. From there, we can use the same formalism as our
approach when specifying the pairwise degree.

Now, we consider separately the degree-correlated and
uncorrelated cases. In the correlated case, where f3(k, k1, k2)

= kk1k2/(N〈k〉)2, Eq. (6) can be rewritten in terms of the fraction
of infected links

V =
∑

k

kP(k)xk

N〈k〉
(7)

as
dxk

dt
= −γ xk + β2(1 − xk)kV + β3(1 − xk)kV2. (8)

In this case, the dynamics of nodes of degree k is determined
by the global variable V. To study the qualitative characteristics of
the dynamics, we find the steady-state solutions. The fixed point of
Eq. (8) is

xk =
β2kV + β3kV2

γ + β2kV + β3kV2
. (9)

Inserting this in (7), we obtain a nonlinear equation that determines
the fraction of infected links V,

V =
1

N〈k〉

∑

k

kP(k)(β2kV + β3kV2)

γ + β2kV + β3kV2
. (10)

The state with no infection, V = 0, is a solution to (10). How-
ever, it is linearly unstable for β2 > βc

2 = γ 〈k〉/〈k2〉, as can be seen
by linearizing Eq. (8) about V = 0, multiplying by kP(k)/(N〈k〉),
and summing over k, which yields the linearized equation for the
evolution of the perturbation δV

dδV

dt
= −γ δV + β2

〈k2〉

〈k〉
δV. (11)

The nonzero solutions of Eq. (10) represent states with a nonzero
fraction of infected nodes.
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Now, we study the uncorrelated case where f3(k, k1, k2)

= 2〈k〉/N2. In this case, Eq. (6) can be rewritten in terms of the
fraction of infected nodes,

U =
∑

k

P(k)xk

N
, (12)

and the fraction of infected links V. In terms of these quantities,
Eq. (6) reads

dxk

dt
= −γ xk + β2(1 − xk)kV + β3(1 − xk)〈k〉U

2. (13)

As in the prior case, the equilibrium is

xk =
β2kV + β3〈k〉U

2

γ + β2kV + β3〈k〉U2
. (14)

Evaluating this expression in Eqs. (7) and (12), we obtain the
coupled equations,

U =
1

N

∑

k

P(k)(β2kV + β3〈k〉U
2)

γ + β2kV + β3〈k〉U2
, (15)

V =
1

N〈k〉

∑

k

kP(k)(β2kV + β3〈k〉U
2)

γ + β2kV + β3〈k〉U2
. (16)

The state with no infection, U = 0, V = 0, is a solution of (15)
and (16). By considering perturbations δU, δV from this solution,
linearizing Eq. (13), and evaluating in Eq. (7) for the first equation
and Eq. (12) for the second equation, we obtain the linear system

dδV

dt
= −γ δV + β2

〈k2〉

〈k〉
δV, (17)

dδU

dt
= −γ δU + β2〈k〉δV, (18)

which shows that the no infection state is linearly unstable for
β2 > γ 〈k〉/〈k2〉, which is the same threshold we obtained for the
correlated case.

In summary, nonzero solutions of Eq. (10) and Eqs. (15)
and (16) for the degree-correlated and uncorrelated cases, respec-
tively, represent states with a nonzero number of infected nodes.
Figure 3 shows the fraction of infected nodes U for the uncorrelated
case as a function of the normalized pairwise infectivity β2/β

c
2 for

three values of the triangle infectivity β3 obtained from numerical
solution of Eqs. (15) and (16) with P(k) ∝ k−4 for 67 < k < 1000
and 0 otherwise. Different solutions are plotted as solid and dashed
lines to indicate stability or instability, respectively. The connected
circles are obtained from numerical simulations of the full stochas-
tic microscopic model. In these simulations, β2 was slowly increased
in small steps up to a maximum value and subsequently decreased
back to its initial value. For each β2, the average number of infected
nodes after transient effects disappeared is shown as a filled circle.
For more details about the simulations, see the Appendix.

The behavior of the microscopic simulations is captured qual-
itatively by the mean-field equations. The quantitative disagree-
ment is likely due to the assumptions inherent to the mean-field

FIG. 3. Fraction of infected nodes U vs link infectivity β2 obtained from the
mean-field equations (15) and (16) (solid and dashed lines) and from micro-
scopic simulations (connected circles) using P(k) ∝ k−4 on [67, 1000], γ = 2,
and N = 10 000 for β3 = 0.0194 (a), 0.0388 (b), and 0.05482 (c). Refer to the
text for an explanation of the discrepancy between the mean-field equations and
microscopic simulations.

approximation. In fact, Ref. 28 has shown that, for the partic-
ular case of uncorrelated triangles on an Erdös–Rényi network,
the disagreement almost disappears when pair correlations are
taken into account. Since our interest in this paper is on the
qualitative dynamics, we use the mean-field theory, but note that
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the approaches proposed in Refs. 28 and 36 could be used to
obtain better approximations. The qualitative aspects of interest,
captured by the mean-field equations and the numerical solution of
Eqs. (15) and (16), are the following. For small values of β3 [Fig. 3(a),
β3 = 0.0194], the bifurcation from the state with no infection
(U = 0) to the infected state (U > 0) is continuous. However, for
larger values of β3 [Fig. 3(c), β3 = 0.0582], the transition is dis-
continuous: as β2 increases past a critical value βc

2, the fraction of
infected links increases explosively toward an epidemic equilibrium
(upward arrow). If β2 is subsequently decreased, the fraction of
infected links remains high until β2 decreases past the value at which
the epidemic equilibrium solution disappears and then it decreases
to zero (downward arrow). For such values of β3, there is hystere-
sis, bistability, and explosive transitions. At a critical value β3 = βc

3,
which will be the focus of our interest, there is a transition from
the type of bifurcation shown in Fig. 3(a) to the type of bifurca-
tion shown in Fig. 3(c). Figure 3(b) shows U as a function of β2 for
a value β3 = 0.0388 ≈ βc

3. We are interested in exploring how the
presence of this bistable regime is affected by the degree distribution
P(k) and other parameters of the model, in particular, the triangle
infectivity, β3.

Figure 4 shows the phase diagram in the (β2, β3) plane for
the degree-correlated, collective contagion model. The plot was
obtained by counting the number of solutions of Eq. (10) as a func-
tion of β2 and β3 for γ = 2 and P(k) ∝ k−4 when 67 < k < 1000
and 0 otherwise (all subsequent phase diagram plots are calcu-
lated using the same parameters). Light pink indicates that there
is only the solution V = 0 corresponding to a stable state with
no contagion. Orange indicates two solutions, the unstable V = 0
solution and another stable solution with V > 0. Finally, dark red
indicates a bistable regime with three solutions: the stable V = 0

FIG. 4. Phase diagram for the degree-correlated, collective contagion model.
The light pink region labeled “No infection” corresponds to 1 solution of Eq. (10),
the orange region labeled “Infection, no bistability” to 2 solutions, and the region
labeled “Bistability” to 3 solutions. The parameters are γ = 2 and P(k) ∝ k−4

when 67 < k < 1000 and 0 otherwise.

solution and a pair of stable and unstable solutions with positive V.
As noted in Refs. 24 and 26, this regime is only present for large
enough triangle infectivity, i.e., for β3 > βc

3. The phase space for the
uncorrelated case (not shown) is qualitatively similar to the one in
Fig. 4, but the transition to bistable behavior occurs at a larger value
of β3.

To quantify how the onset of bistability depends on the hyper-
graph parameters, we define the bistability index B(β3) as the max-
imum separation, over all values of β2, between the largest and
smallest stable solutions for the fraction of infected nodes U. The
bistability index can be calculated from microscopic simulations
of the contagion process such as those used to produce Fig. 3 or
from the numerical solution of Eq. (10) for the correlated case
and Eqs. (15) and (16) for the uncorrelated case. In Fig. 5, we
plot the bistability index B as a function of β3 computed from
microscopic simulations for three choices of the link degree distri-
bution P(k), all with a mean degree of 100: (a) P(k) constant for
50 < k < 150 and 0 otherwise, (b) P(k) ∝ k−4 for 67 < k < 1000
and 0 otherwise, and (c) P(k) ∝ k−3 for 53 < k < 1000 and 0 oth-
erwise. For each distribution, we considered the uncorrelated case
(orange connected circles) and the degree correlated case (blue con-
nected triangles). The dashed lines indicate the value βc

3 at which
we expect the onset of bistability, obtained from the numerical
solution of Eqs. (10) and (15)–(16) for the degree-correlated and
-uncorrelated cases, respectively (in Sec. IV, we provide analyti-
cal expressions for these values). As the degree distribution of the
pairwise interaction network P(k) becomes more heterogeneous
from (a) to (c), the value of β3 at which the onset of bistabil-
ity occurs increases for the uncorrelated case, while it remains
almost unchanged for the degree-correlated case. A heuristic inter-
pretation of this phenomenon is the following: in the uncorrelated
case, the triangle interactions do not depend on the heterogeneity
of the link degree distribution. Therefore, as the link degree dis-
tribution P(k) becomes more heterogeneous, contagion becomes
dominated by hubs of the pairwise interaction network, a mech-
anism which does not result in bistability. Therefore, bistability is
suppressed in the uncorrelated case. On the other hand, for the
degree-correlated case, both triangle and link contagion mecha-
nisms increase their effectiveness in tandem as the heterogeneity
of the link degree distribution is increased. It is important to note
that the increase in βc

3 with heterogeneity, which is shown here
in absolute terms, still occurs if one considers it relative to the
value of βc

2 (i.e., βc
3/β

c
2 also increases with heterogeneity), as we will

show later.
Another interesting aspect seen in Fig. 5 is that the transition

to bistable behavior seems sharper in the uncorrelated case for the
more heterogeneous networks. As we will see in Sec. IV, the nature
of the bifurcation is indeed different for the uncorrelated case and
heterogeneous networks.

Finally, we have to point out that the numerical calculation
of the bistability index from numerical simulations can be chal-
lenging. When the unstable solution is small, finite-size effects
can cause transitions to the nonzero stable solution from the
stable zero solution, making the numerical determination of the
stable fixed points difficult and the bistability index plots noisy.
Nevertheless, the mean-field theory predicts well the onset of
bistability.
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FIG. 5. Bistability index B as a function of β3 for (a) P(k) constant for 50 < k

< 150 and 0 otherwise, (b) P(k) ∝ k−4 for 67 < k < 1000 and 0 otherwise,
and (c) P(k) ∝ k−3 for 53 < k < 1000 and 0 otherwise. For each distribution,
we considered the uncorrelated case (orange connected circles) and the degree
correlated case (blue connected triangles). The dashed lines indicate the value
βc

3 at which we expect the onset of bistability, obtained from numerical solution of
the mean-field equations (12) and (15)–(16).

B. Hyperedges of sizes 2 and 3 with individual

contagion

Now, we consider the case of individual contagion, in which an
m-hyperedge infects a susceptible node with rate βm when at least

one member of the hyperedge is infected. For simplicity, we will still
consider only links and triangles (M = 3) with infection rates of β2

and β3, respectively.
The analog to Eq. (6) for the individual contagion case is

dxk

dt
= −γ xk + (1 − xk)β2

∑

k1

P(k1)f2(k, k1)xk1 + (1 − xk)
β3

2

×
∑

k1 ,k2

P(k1)P(k2)f3(k, k1, k2)[1 − (1 − xk1)(1 − xk2)]. (19)

For the correlated case, f3(k, k1, k2) = 2kk1k2/(N〈k〉)2, this can be
rewritten as

dxk

dt
= −γ xk + (β2 + 2β3)(1 − xk)kV − β3(1 − xk)kV2, (20)

with a fixed point

xk =
(β2 + 2β3)kV − β3kV2

γ + (β2 + 2β3)kV − β3kV2
. (21)

Inserting this into Eq. (7) like before, we obtain

V =
1

N〈k〉

∑

k

kP(k)[(β2 + 2β3)kV − β3kV2]

γ + (β2 + 2β3)kV − β3kV2
. (22)

Linearizing about the V = 0 equilibrium, we find that the epidemic
threshold is given by the condition

β2 + 2β3 = γ
〈k〉

〈k2〉
, (23)

which defines a linear relationship between β2 and β3 for fixed γ , in
contrast to the collective contagion mechanism that does not alter
the epidemic threshold βc

2 = γ 〈k〉/〈k2〉. This relationship can be
understood heuristically by noting that, close to the V = 0 solution,
the probability that two nodes in a hyperedge are simultaneously
infected can be neglected. Under that assumption, infection of a sus-
ceptible node by a triangle when at least one other node is infected
is equivalent to independent infection by either of the two other
nodes in the triangle with rate β3. Since in the correlated case a
node belongs, on average, to the same number of links and trian-
gles, the individual contagion model reduces to the traditional SIS
model with contagion rate βeff

2 = β2 + 2β3 in the linear regime (we
emphasize, however, that the nonlinear behavior can be different).

In Fig. 6, we plot the (β2, β3) phase space for this scenario, with
light pink indicating one solution (V = 0) to Eq. (22) and orange
indicating two solutions, the unstable V = 0 solution and a stable
V > 0 solution.

Considering the uncorrelated case where f(k, k1, k2) = 2〈k〉/N2

and expressing Eq. (19) in terms of U and V, we obtain

dxk

dt
= −γ xk + β2(1 − xk)kV

+ 2β3(1 − xk)〈k〉U − β3(1 − xk)〈k〉U
2, (24)

with equilibrium

xk =
β2kV + 2β3〈k〉U − β3〈k〉U

2

γ + β2kV + 2β3〈k〉U − β3〈k〉U2
, (25)
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FIG. 6. Phase diagram for the degree-correlated, individual contagion model with
parameters γ = 2 and P(k) ∝ k−4 when 67 < k < 1000 and 0 otherwise.

which has different first-order behavior than the degree-correlated
case. Inserting this expression into Eqs. (7) and (12), we obtain

U =
1

N

∑

k

P(k)(β2kV + 2β3〈k〉U − β3〈k〉U
2)

γ + β2kV + 2β3〈k〉U − β3〈k〉U2
, (26)

V =
1

N〈k〉

∑

k

kP(k)(β2kV + 2β3〈k〉U − β3〈k〉U
2)

γ + β2kV + 2β3〈k〉U − β3〈k〉U2
. (27)

Linearizing, we obtain the system

δU =
〈k〉β2

γ
δV +

2〈k〉β3

γ
δU, (28)

δV =
〈k2〉β2

〈k〉γ
δV +

2〈k〉β3

γ
δU. (29)

Solving this system and canceling the zero solution, we find that the
epidemic threshold is defined by a non-linear relationship between
the three epidemic parameters,

β2 =
〈k〉γ 2 − 2〈k〉2γβ3

〈k2〉γ − 2(〈k2〉 − 〈k〉2)〈k〉β3
. (30)

This relationship implies that there is a singularity when
β3 = β∗

3 = γ 〈k2〉/[2(〈k2〉 − 〈k〉2)〈k〉]. However, one can check that
β2 is negative at β3 = β∗

3 , and therefore, the singularity is not phys-
ically relevant. Note that when 〈k2〉 = 〈k〉2 in the case of a k-regular
network, the threshold reduces to that of the degree-correlated case.

C. Higher-order healing: the Hipster effect

Here, we consider the effect of higher-order healing for both
collective and individual contagion. By higher-order healing, we refer
to a situation where infected nodes that belong to a hyperedge of
size m > 2 with other infected nodes heal at rate βm. This can be

FIG. 7. Phase diagram for the degree-correlated, higher-order healing with indi-
vidual contagion with parameters γ = 2 and P(k) ∝ k−4 when 67 < k < 1000
and 0 otherwise.

thought of as a “hipster effect” where if an idea or trend is popular in
groups, then this makes an individual less likely to adopt the trend,
but the individual can be convinced to adopt the trend by their pair-
wise connections.37 For both the collective and individual contagion
cases, we comment on the existence of bistability based on numerical
phase plots.

When the contagion is collective, the model including higher-
order healing can be written as Eq. (6) with the sign of the third
term changed, and because the triangle healing mechanism is solely
higher-order, there is no effect on the epidemic threshold, which is
obtained by the linearization of the 0 solution. However, we find that
explosive transitions do not occur for β2, β3 ≥ 0.

Likewise, for the individual contagion model, higher-order
healing can be written as Eq. (19) with the third term negative.
In this case, the epidemic threshold for both the degree-correlated
and uncorrelated case can be obtained by substituting −β3 for β3

in Eqs. (23) and (30), respectively. Higher-order healing in individ-
ual contagion enables explosive transitions to occur for ranges of
β2, β3 ≥ 0, as can be seen in Fig. 7, which shows the phase space
(β2, β3) for the degree-correlated case. As one might expect, for large
enough higher-order healing β3, there is no infection, but there is
a narrow band of bistable behavior separating the regions of no
infection and monostable infection.

D. Unfortunate series of events

So far, we have considered hypergraphs with hyperedges of
sizes 2 and 3 only. We now briefly discuss contagion in networks
with hyperedges of all sizes; i.e., M = N. In the context of epidemic
spreading, hyperedges could be interpreted as participation in social
events such as parties, conferences, concerts, and sports events. For
simplicity, we will focus on a hypergraph with degree-correlated
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hyperedges where

fm(k, k1, . . . , km−1) =
(m − 1)! kk1k2, . . . , km−1

(N〈k〉)m−1

〈k(m)〉

〈k〉
(31)

such that the average number of hyperedges of size m a node
belongs to is 〈k(m)〉. In this case, by repeating the calculations of
Sec. III B, the fraction of infected nodes of degree k evolves in terms
of the fraction of infected edges V (7) as

dxk

dt
= −γ + k(1 − xk)

M∑

m=2

βm〈k(m)〉

〈k〉
[1 − (1 − V)m−1] (32)

for individual contagion and

dxk

dt
= −γ + k(1 − xk)

M∑

m=2

βm〈k(m)〉

〈k〉
Vm−1 (33)

for collective contagion. In the case of collective contagion, larger
hyperedges can cause the emergence of new stable fixed points,
which can lead to richer consensus dynamics.24 We focus, however,
on the case of individual contagion. Linearizing, we find that the
solution xk = 0 becomes unstable when

M∑

m=2

(m − 1)βm〈k(m)〉

〈k〉
>

γ 〈k〉

〈k2〉
. (34)

If the sum yields a value larger than γ 〈k〉/〈k2〉, propagating
social contagion will result. Social event restrictions implemented as
a truncation of the series by prohibiting events larger than a certain
size or practices that reduce contagion in social events and reduce
βm (such as enforcing physical separation) can reduce the value of
the sum so that contagion does not propagate.38,39

IV. THE EFFECT OF THE DEGREE DISTRIBUTION ON βc

3

In Sec. III, we expressed the epidemic threshold βc
2 in terms

of moments of the degree distribution of the underlying network
structure. Similarly, we would like to express the critical value of
β3 at which the explosive transitions appear, βc

3, as a function of
hypergraph structure. Explosive transitions and bistability occur
when there are two stable steady-state solutions to Eq. (6). For the
degree-correlated and uncorrelated cases, this occurs when there
are two non-zero solutions to Eq. (10) and the coupled system of
Eqs. (15) and (16), respectively. We can compute the critical value of
β3 by finding the numerical solution of these mean-field equations
and determining the value of βc

3 at which bistability appears. This
method is much more efficient than using stochastic microscopic
simulations of the contagion model to infer the onset of explosive
transitions and to map the phase space. Figure 8 shows the predicted
value of βc

3 normalized by βc
2 for the correlated (a) and uncorrelated

(b) cases as a function of the power-law exponent r and the maxi-
mum degree kmax, where Eqs. (10) and (15)–(16) were solved using
P(k) ∝ k−r if 50 ≤ k ≤ kmax and P(k) = 0 otherwise. Larger values
of r and kmax correspond to larger heterogeneity of the degree dis-
tribution. We note that for the most homogeneous network—the
k-regular network—βc

3/β
c
2 is 1, and we see in Figs. 8(a) and 8(b) that

βc
3 increases relative to βc

2 as r or kmax increases except for small

FIG. 8. βc

3/β
c

2 as a function of power-law distribution parameters for the degree-
correlated case (a) and the uncorrelated case (b). βc

3 was calculated numeri-

cally from the mean-field equations (see the Appendix) and βc

2 = γ 〈k〉/〈k2〉.
The parameters are P(k) ∝ k−r if 50 ≤ k ≤ kmax and P(k) = 0 otherwise and
γ = 2.

values of r and large values of kmax in the degree-correlated case.
Thus, heterogeneity in the degree distribution of the pairwise inter-
action network appears to suppress explosive transitions. However,
this effect is much more pronounced for the uncorrelated case (b)
than that for the degree-correlated case (a), as we discussed previ-
ously. In the Appendix, we describe in more detail the algorithm
employed to find βc

3 from the mean-field equations.
Although this method works well in predicting the value of

βc
3, it does not provide a direct relationship between the network

structure and the onset of explosive transitions and is more compu-
tationally expensive than an analytical expression. For this reason,
we present closed form approximations to βc

3 and describe the
parameter regimes over which they are accurate. Starting with the
degree-correlated case and canceling the zero solution of Eq. (10),
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we find conditions under which there are at least two solutions to

h(V, β2) =
1

N〈k〉

∑

k

kP(k)(β2k + β3kV)

γ + β2kV + β3kV2
− 1 = 0. (35)

First, note that h(0, β2) = β2/β
c
2 − 1 and that h(1, β2) < 0.

Therefore, if ∂h
∂V

(0, βc
2) > 0, then by continuity, there will be at least

two solutions for β2 less than, but sufficiently close to, βc
2. This

condition gives

βc
3

γ
=

〈k3〉〈k〉2

〈k2〉3
, (36)

which works well in predicting the onset of bistability for the degree-
correlated case. The relative error with respect to the value obtained
from directly solving Eq. (10) for all distributions tested is less than
2% (not shown).

The analysis for the degree-correlated case was based on the
behavior of h(V, β2) near V = 0. For the uncorrelated case, however,
we find that a saddle-node bifurcation can occur at positive values of
V, and it is necessary to expand Eqs. (15) and (16) to higher order.

Expanding Eqs. (15) and (16) to second order, setting
β2 = βc

2 = γ 〈k〉/〈k2〉, and subtracting the two equations yield

U =
〈k〉2

〈k2〉
V +

(
〈k〉〈k3〉

〈k2〉2
−

〈k〉2

〈k2〉

)
V2, (37)

which, when evaluated in

h(V, β2) =
1

N〈k〉

∑

k

kP(k)(β2kV + β3〈k〉U
2)

γ + β2kV + β3〈k〉U2
− V = 0 (38)

and expanded to fourth order, again setting β2 = βc
2, yields

h(V, βc
2) = (a0 + a1V + a2V

2)V2, (39)

where

a0 = −
〈k〉〈k3〉

〈k2〉2
+

〈k〉5β3

〈k2〉γ
, (40)

a1 =
〈k〉2〈k4〉

〈k2〉3
− 4

〈k〉5β3

〈k2〉2γ
+ 2

〈k〉4〈k3〉β3

〈k2〉3γ
, (41)

a2 = −
〈k〉3〈k5〉

〈k2〉4
+ 5

〈k〉5β3

〈k2〉2γ
+ 3

〈k〉6〈k3〉β3

〈k2〉4γ
− 6

〈k〉4〈k3〉β3

〈k2〉3γ

+
〈k〉3〈k3〉2β3

〈k2〉4γ
−

〈k〉10β2
3

〈k2〉4γ 2
. (42)

For continuous transitions to epidemics, there is only one equi-
librium for V at β2 = βc

2, namely, V = 0. The onset of bistability
occurs when a second solution appears, which corresponds to the
first appearance of a root of (39) in the interval (0, 1). Such a root
can appear at V = 0 in a transcritical bifurcation or at V > 0 as a pair
of roots in a saddle-node bifurcation. A pair of roots appears when
the discriminant of the quadratic equation a0 + a1V + a2V

2 = 0 is
zero. However, this bifurcation is physically meaningless if it occurs
for values of V outside the interval [0, 1]. Therefore, we impose
the constraint that the value of β3 found by solving a2

1 − 4a0a2

= 0 must satisfy the inequality 0 ≤ −a1/2a2 ≤ 1. In addition, we

FIG. 9. Relative error in the value of βc

3/β
c

2 obtained from Eq. (43) compared
with the numerically obtained value shown in Fig. 8(b).

note that because of continuity, the sign of the a2 term must be
negative because otherwise, ∂h

∂V
(0, βc

2) > 0 and the bifurcation has
already occurred. The transcritical bifurcation occurs when a root
crosses from a negative value to a positive value, which occurs when
one root of a0 + a1V + a3V

2 = 0 is V = 0, implying that a0 = 0
and βc

3 = γ 〈k3〉/〈k〉4. Using these conditions, we can construct a
piecewise definition of βc

3

βc
3 =





Solve(a2
1 − 4 a0 a2 = 0), a2 < 0, 0 ≤ −

a1

2a2
≤ 1,

〈k3〉

〈k〉4
γ , else.

(43)

The relative error in the value of βc
3/β

c
2 obtained from Eq. (43)

compared with the numerically obtained value shown in Fig. 8(b)
is shown in Fig. 9. In principle, one can expand to higher order
to gain accuracy for the most heterogeneous of distributions. How-
ever, there is limited utility in increasing the order of the expansion
further because the resulting conditions become extremely compli-
cated.

V. DISCUSSION

In this paper, we studied the SIS model of social contagion
on hypergraphs with a heterogeneous structure. The mean-field
description in Eq. (2) allowed us to explore the effects of hyperedge
organization on the epidemic onset and the onset of bistability and
explosive transitions. One of our main findings is that with increas-
ing heterogeneity of the pairwise network degree distribution, the
onset of explosive transitions is postponed when the pairwise and
higher-order interactions have an independent structure. More gen-
erally, when considering a hypergraph contagion model, the group
infection and the pairwise infection are competing mechanisms by
which contagion spreads. Factors that promote contagion via pair-
wise infection, such as a heterogeneous degree distribution of the
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pairwise contact network, suppress discontinuous transitions. Con-
versely, heterogeneity in the degree distribution of hyperedges of
higher order promotes such transitions.

We considered two ways in which the structure of hyperedges
of different sizes could be organized: the uncorrelated case, in which
they are independent, and the correlated case, in which hyperedges
of different sizes connect preferentially to the same nodes. While the
organization of hyperedges in real world networks is surely much
more complicated, these cases can be considered null models against
which the structure of real-world hypergraphs can be compared.

We studied various forms of higher-order contagion and heal-
ing: (i) collective contagion, in which all other members of the
hyperedge need to be infected for contagion to occur, (ii) individual
contagion, in which at least one member of the hyperdegree needs
to be infected, and (iii) higher-order healing, in which pairwise
interactions are infectious, while higher-order interactions heal.
Other forms of higher-order contagion could in principle be stud-
ied with the same methodology, but we leave these studies for future
research.

Now, we mention some of the limitations of our study. First,
since we focused on the simplest contagion model, an important
question left for future research is whether our results remain valid
for more realistic epidemiological models (e.g., such as those used
to model COVID-1914,40). Our model also does not apply to non-
Markovian contagion dynamics, which are important when mod-
eling real-world epidemics. From a technical standpoint, another
limitation is that we used a mean-field description of the dynam-
ics, and it is known that such a description is not quantitatively
accurate for moderate values of the infected population value.28,41

Since we were mainly interested in the behavior close to the onset
of epidemics, the mean-field approximation was enough for our
purposes. However, more precise descriptions could be obtained
as in Refs. 28 and 42. Another important limitation of our hyper-
graph model is that we assume that the probability that two nodes
belong to the same hyperedge is a function of their hyperdegrees.
While this assumption can be relaxed by considering additional
nodal variables, it is possible that such a model might be inade-
quate to describe some real-world networks. Finally, we note that
our model relies on knowledge of the functions fm, which encode the
organization of hyperedges across different hyperedge sizes. These
functions have not yet been estimated from real-world networks,
but as progress is made toward understanding the organization of
higher-order interactions,23 the determination of these functions
could be a natural next step.

While in this paper we applied our hyperdegree-based mean-
field equation to the SIS epidemic model, the same formalism could
be applied to other dynamical processes on hypergraphs, such as
synchronization, opinion formation, and other types of epidemic
models. We believe that this methodology will be useful to study the
effect of heterogeneity on these hypergraph dynamical processes.
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APPENDIX: NUMERICAL EXPERIMENTS

1. Microscopic simulation of the hypergraph SIS

model

We simulated the stochastic SIS model on a given hypergraph
as a discrete-time Markov process on the nodes with transitions
to infected and healthy states through the modalities described
in Sec. II B, a variant of which was simulated in Ref. 44. We
denote the binary states of the nodes at a time step t by a vector
Xt = (Xt

1, X
t
2, . . . , Xt

N), where Xt
i = 0 if node i is healthy and Xt

i = 1
if it is infected. In this model, we assume that the events that a hyper-
edge infects node i and that a pairwise connection infects node i
are independent. Likewise, we assume that an infected neighbor,
whether through a pairwise or group connection, infects a node
independently of any other neighboring node. The probability that
a single infected node infects its pairwise neighbor in the time inter-
val [t, t + 1t] is β21t; therefore, the probability that no neighboring
node infects a given node is

(1 − β21t)(AX)i ,

where A is the adjacency matrix with entries Aij = 1 if nodes i and j
are connected by a link and 0 otherwise.

In the collective contagion model, the probability that a triangle
infects a node in the time interval [t, t + 1t] is β31t provided that
the other two nodes are infected. Therefore, the probability of no
triangles infecting node i can be written as

(1 − β31t)
∑

{i1,i2,i} Xt
i1

Xt
i2 ,

where the sum is over all triangles {i1, i2, i} with node i as a member.
Last, the rate of healing is constant and independent of the infection
status of any neighboring nodes; therefore, the probability that an
infected node heals in a time interval [t, t + 1t] is γ1t.

The Markov process can then be described as

P(Xt+1
i = 1 | Xt

i = 0) = 1 − (1 − β21t)(AXt)i(1 − β31t)
∑

{i1,i2,i} Xt
i1

Xt
i2 ,

(A1)

P(Xt+1
i = 0 | Xt

i = 1) = γ1t. (A2)

In our simulations, we updated the status of the nodes syn-
chronously at times t = 0, 1t, 21t, . . . , n1t, where 1t = 0.1.

Our specific implementation is described in what follows. We
note that for all mechanisms of infection and healing described next,
ui ∼ Uniform(0, 1) and this variable is drawn independently for
each modality and each node i. At each time step, we iterate through
every node and follow the following conditional logic. If a node i is
already infected, it is healed if ui < γ1t and remains infected oth-
erwise. Next, if the node i is currently healthy, it is infected by its
pairwise neighbors if ui < 1 − (1 − β21t)(AX)i and remains healthy
otherwise. If node i still remains healthy after being subjected to a
pairwise infection, the node is infected by its triangle neighbors if

ui < 1 − (1 − β31t)
∑

{i1,i2,i} Xt
i1

Xt
i2

and remains healthy otherwise. Note that each infection mechanism
is only dependent on the prior time step; therefore, the order of these
steps does not matter.

Chaos 30, 103117 (2020); doi: 10.1063/5.0020034 30, 103117-11

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

At t = 0, the network is randomly and uniformly seeded with
a small fraction (p = 0.001) of infected nodes, and at each subse-
quent step, the current state is iterated as described above and the
population average, xt =

∑N
i=1 Xt

i/N, is stored. To avoid the absorb-
ing state Xt = 0, we infect a single randomly chosen node if the
population becomes completely healthy. To mitigate the effect of
variability in the stochastic simulation, we average the time response
of xt over a sufficient time window (determined from the average
infected response curves) after it reached the steady-state. In this
study, we ran the simulation for a fixed set of parameters {γ , β2, β3}

for 1000 time steps and averaged over the last 300 time steps.
To find the bistability index, we initialize the simulation with

a small fraction of infected agents for a fixed β3 value and incre-
mentally increase β2 from a sufficiently small value (typically βc

2/2)
to a value above the critical value of β2 (typically 3βc

2/2) and then
incrementally decrease the value of β2 down to its original value. As
described previously, if the equilibrium value while increasing the
value of β2 is distinct from the equilibrium value while decreasing
the value of β2 for the same β2 values, this indicates the presence of
bistability. We simulated several equilibrium curves corresponding
to different β3 values to observe the value of β3 at which the response
curve starts to show bistability and thus infer the value of βc

3.

2. Network models

We exclusively considered networks generated using the con-
figuration model in order to isolate the effect of the degree distribu-
tion. Although the configuration model has the potential to contain
both self-loops and multi-edges, in practice, the fraction of these
types of edges is small,41 and in our numerical experiments, the
number of self-loops was approximately 1% of the total number of
nodes.

We used networks of size N = 104 in the simulation of the
hypergraph SIS model because this was sufficiently large enough to
reduce the finite-size effects. Because the network realization was
relatively large, we did not average over an ensemble of these ran-
dom graphs as in Ref. 24. We have described in Sec. III A the
particular distributions examined.

We generated the triangles in two different ways correspond-
ing to the two separate cases: degree-correlated and uncorrelated.
For the first case, we used the same degree sequence as used to
generate the network using the configuration model and extended
the configuration model to triangles as has been done in prior
work.32,33 Because this is analogous to the construction of the net-
work configuration model, there is also the possibility for self-loops
and multi-edges, but this probability is low. For the independently
distributed triangles, we drew with replacement a fixed number of
triples (enforcing the mean triangle degree) containing node indices
and assigned these nodes to a triangle. Again, as with the stan-
dard configuration model, there is the possibility for self-loops and
multi-edges, but the probability of either occurring is small.

3. The numerical computation of βc

3

In Sec. IV, we plotted the numerical solution of βc
3 for trun-

cated power-law distributions as a function of the maximum degree
and power-law exponent. In this section, we discuss the specific
methodology in generating these results.

FIG. 10. Illustration of the bistability index with respect to the solutions to the
mean-field equation in the bistable regime.

First, we describe the process for finding the bistability index
accurately from the mean-field equations (10) and (15) and (16)
for the correlated and uncorrelated cases, respectively. Since the
V = 0 solution becomes linearly unstable at β2 = βc

2 and the stable
V > 0 solution is monotonically increasing with β2, the bistability
index B(β3) coincides with the value of the largest root of Eq. (10)
for the correlated case [or Eqs. (15) and(16) for the uncorrelated
case] at β2 = βc

2, as shown schematically in Fig. 10. Therefore, using
our analytical knowledge of βc

2, we set B(β3) ≈ V∗
ε , where V∗

ε is the
largest root at β2 = βc

2 − ε with ε = 10−5 being a small number
added for numerical robustness. (We verified that this method gives
numerically accurate results when compared with other methods
that do not require knowledge of βc

2 but are more computationally
intensive.)

Being able to compute B(β3), we find βc
3 = sup{β3 | B(β3)

= 0} by bisection: starting with an interval [βmin,0
3 , βmax,0

3 ] such
that B(β

min,0
3 ) = 0, B(β

max,0
3 ) > 0, we recursively define the inter-

val [βmin,i+1
3 , βmax,i+1

3 ] as [βmin,i
3 , β̃ i] if B(β̃ i) > 0 and [β̃ i, βmax,i

3 ]
if B(β̃ i) = 0, where β̃ i = (β

min,i
3 + β

max,i
3 )/2. When the length of

the interval [βmin,i
3 , βmax,i

3 ] is less than the tolerance 10−4, we set
βc

3 = β
min,i
3 .

DATA AVAILABILITY

The data that support the findings of this study are openly avail-
able in GitHub at https://github.com/nwlandry/SimplexSIS, Ref.
44.
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