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We present a rigorous methodology for the compaction of crystallographic texture data
associated with a given material volume and show that a statistical orientation distribution
function (ODF) containing any number of orientations can be compacted to a significantly
smaller but representative set of orientations. This methodology is based on the spectral
representation of ODFs through the use of generalized spherical harmonic functions. The
Fourier coefficients of an initial full-size ODF can be matched with those of a more compact
but equivalent ODF. The reduced-size ODF contains a predetermined set of representative
orientations whose weights are adjusted using an algorithm for finding the closest
reduced-size ODF to a given full-size ODF. To demonstrate the accuracy of the methodol-
ogy, we consider three measured ODFs of two cubic metals (pure Cu and an Al alloy)
and a hexagonal metal (pure Zr) and then subsequently perform plane strain and simple
compression simulations with both the initial ODFs and the reduced-size ODFs. We quan-
titatively demonstrate that texture evolution and stress–strain response simulated with
reduced-size ODFs are in excellent agreement with those simulated with initial full-size
ODFs.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Crystallographic texture (also called the orientation dis-
tribution function, or the ODF) is an important feature of
the microstructure in polycrystalline materials known to
have a strong influence on the anisotropy of various mate-
rial properties (Adams and Olson, 1998; Bhattacharyya
et al., 2015; Bunge, 1993; Fromm et al., 2009;
Fuentes-Cobas et al., 2013; Jahedi et al., 2014; Knezevic
et al., 2014a; Kocks et al., 1998). Therefore, anisotropic
material models must consider the distribution of crystal
orientations. In particular, modeling the anisotropy of plas-
tic properties requires consideration of the crystal struc-
ture and orientation because of their roles in the
activation of micro-scale deformation mechanisms
(Taylor, 1938). A number of polycrystal plasticity material
models have been developed to predict material response
based on the crystallography of deformation mechanisms
and the distribution of crystal orientations. These models
are classified based on the homogenization scheme
that links the grain scale response to the response of a
polycrystalline aggregate to the mean-field models of
self-consistent (Lebensohn and Tomé, 1993; Lebensohn
et al., 2007) and Taylor type (Knezevic et al., 2008a;
Taylor, 1938; Van Houtte et al., 2004) and the full-field
models of finite-element (FE) (Kalidindi et al., 1992;
Knezevic et al., 2014c; Roters et al., 2010) and Green’s
function fast Fourier transform (FFT) type (Lebensohn
et al., 2012). Since they are physically based and able to
capture the evolution of the crystallographic texture, these
models are important for understanding microstructural
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processes and associated effects on plasticity (Asaro and
Needleman, 1985; Roters et al., 2010). As such, they are
also highly desirable for performing accurate simulations
of metal forming processes. Example applications include
simple compression and tension tests (Beaudoin et al.,
1993; Knezevic et al., 2012b), bending (Knezevic et al.,
2013c,d,e), cup-drawing (Balasubramanian, 1996; Raabe
and Roters, 2004), sheet hydroforming (Beaudoin et al.,
1994), and bulk forming (Jahedi et al., 2015a; Knezevic
et al., 2014d; Kumar and Dawson, 1995; Zecevic et al.,
2015b). However, performing complex metal forming pro-
cess simulations with polycrystal plasticity is recognized
as a vast computational challenge because of the need for
(1) specialized Newton–Raphson iterative schemes to
solve sets of highly non-linear, extremely stiff constitutive
equations with poor convergence characteristics for every
constituent crystal at every material point and at each trial
time increment and (2) storing large sets of state variables
related to texture data. For example, the computational
time involved in simulating a simple compression up to a
strain of 0.2 with about 1000 elements and 1000 grains
at an integration point is approximately 60 h on a regular
PC (Knezevic et al., 2013d). Clearly, speedups are necessary
to render metal forming simulations with polycrystal plas-
ticity constructive laws practical.

From the numerical implementation point of view,
several strategies have been explored to speed up the poly-
crystal plasticity calculations. Database approaches that
store precompiled solutions in the form of spectral coeffi-
cients of the generalized spherical harmonics (GSH) basis
(Kalidindi et al., 2006; Knezevic et al., 2008b; Shaffer
et al., 2010; Wu et al., 2007) and the fast Fourier transform
bases (Al-Harbi et al., 2010; Knezevic et al., 2009; Zecevic
et al., 2015a) improved the speed for about two orders of
magnitude. A process plane concept, based on proper
orthogonal decomposition in Rodrigues–Frank space, has
been presented in Sundararaghavan and Zabaras (2007).
Other attempts to improve efficiency of the polycrystal
plasticity codes rely on adaptive sampling algorithms and
building a database that constantly updates itself (Barton
et al., 2011, 2008). The latter methods improved the speed
by about an order of magnitude. It has recently been
shown that solving polycrystal plasticity using the
Jacobian-Free Newton–Krylov (JFNK) technique in place
of the Newton–Raphson method can yield some computa-
tional benefits (Chockalingam et al., 2013). Recently, we
have successfully developed a high performance computa-
tional application of the databases approach containing
discrete Fourier transforms that runs on graphic processing
units (GPUs) (Mihaila et al., 2014). We have also developed
an improved version that has the advantage of an efficient
GPU8 algorithm for matrix–matrix multiplication
(Knezevic and Savage, 2014). The latter implementation
resulted in a major improvement in computational speed,
exceeding three orders of magnitude over the conventional
numerical schemes.

Because the computational time involved in crystal
plasticity calculations scale linearly with the number of
crystal orientations, the numerical schemes summarized
above can further benefit from the data compaction tech-
nique aimed at minimizing the amount of state variables
related to texture data. Experimental techniques for acqui-
sition of texture data produce data sets consisting of large
numbers of single crystal orientations (Jahedi et al., 2015b;
Knezevic et al., 2010; Lentz et al., 2015a,b). The use of such
large discrete single crystal orientations in subsequent
crystal plasticity simulations is not practical, and we will
show not necessary for capturing plastic anisotropy and
concomitant evolution of texture. We develop a procedure
for the reduction of texture data described in the form of
statistical distributions (ODFs) to a level of computation-
ally manageable but representative statistical distributions
where qualitatively and quantitatively sufficient details
can be recovered without losing any physical significance.
The developed procedure is independent on techniques
used to determine the measured full-size ODFs. The tech-
niques for measuring ODF are broadly classified according
to whether they measure macro-texture or micro-texture.
The former includes X-ray diffraction (XRD) and neutron
diffraction while the latter is based on electron backscat-
tered diffraction (EBSD).

Quantitatively an ODF can be expressed by a weighted
set of discrete orientations. To this end, a fundamental
problem is determining a statistically significant set of dis-
crete orientations. A number of studies for estimating the
minimum number of crystal orientations representing an
ODF have been conducted in the past (Baudin et al.,
1995; Baudin and Penelle, 1993; Pospiech et al., 1994;
Wright and Adams, 1990). The most promising methodol-
ogy was based on an appropriately defined error difference
between a macroscopically measured ODF and an ODF
constructed from experimentally measured individual
grain orientations (Baudin et al., 1995; Pospiech et al.,
1994). The number of orientations in the constructed
ODF was systematically increased until the error was min-
imized ensuring that the newly constructed ODF is statisti-
cally significant. The estimated number of orientations
varied with a given ODF. Part of the reason for this varia-
tion is because weights of individual orientations were
not adjusted.

The procedure developed in this paper is based on the
spectral representation of ODFs using the GSH bases. A
given ODF containing any number of orientations is repre-
sented by corresponding Fourier coefficients as a point in
an infinite-dimensional Fourier space. We refer to this
point as the target point, or the full-size target ODF. We
recognize that the Fourier coefficients of the given/target
full-size ODF can be matched with those of another equiv-
alent ODF using algorithms for finding the closest
reduced-size ODF to the target ODF. This key recognition
led to the development of a procedure capable of reducing
large datasets of crystal orientations. In our approach, the
procedure starts by selecting a set of crystal orientations
that cover an orientation space and delineating the com-
plete set of all physically realizable textures using the
selected orientations. The delineated space is referred to
as the texture hull (Kalidindi et al., 2004; Knezevic and
Kalidindi, 2007; Lyon and Adams, 2004; Wu et al., 2007)
and must contain the target ODF. We then solve a linear
programming problem to match the Fourier coefficients
of the given ODF with those of an equivalent ODF. The
methodology takes advantage of the linearity of the Fourier



Fig. 2. Experimentally measured basal and prismatic pole figures show-
ing initial texture for Zr.
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space. Finally, we seek the minimum number of weighted
crystal orientations in the equivalent ODF necessary for
accurate modeling of the mechanical response and texture
evolution. The development of these new procedures will
be described in this paper.

Using this new procedure, we fitted three measured
ODFs involving two cubic metals, the oxygen-free
high-conductivity copper (OFHC Cu) and the magnesium–
manganese–iron aluminum alloy (AA6016), and one
hexagonal metal, high-purity zirconium (Zr of purity
<100 ppm). These material systems were selected to
demonstrate the accuracy of the procedure on distinct
crystal structures, initial ODFs, and deformation mecha-
nisms involved in plasticity. We quantitatively demon-
strate that texture evolution and stress–strain response
simulated with reduced-size ODFs are in excellent agree-
ment with those simulated with the measured ODFs.

In Section 2, we describe the materials (i.e., initial
texture measurements) used later in our case studies.
In Section 3, we describe the fundamentals of spectral
representation and the procedure in detail. In Section 4,
we present the results of several case studies. Finally, the
conclusions are presented in Section 5.

2. Materials

We used two face-centered cubic (FCC) metals, the
oxygen-free high-conductivity copper (OFHC Cu) and the
magnesium–manganese–iron aluminum alloy (AA6016),
and one hexagonal close-packed (HCP) metal, Zr. Fig. 1
shows the experimental pole figures for the FCC materials.
There is a noticeable difference between the initial textures
of the two FCC metals. Cu has a weak texture preserved
from prior rolling and AA6016 has a strong cube texture
as a consequence of rolling followed by full recrystalliza-
tion. Texture for the rolled and fully recrystallized
AA6016 sheet was reported in Tomé et al. (2002). The initial
textures for Cu and AA6016 were measured by XRD and
EBSD, respectively. The Zr used in this work was the same
clock rolled and annealed plate reported in Beyerlein and
Tomé (2008). Fig. 2 shows a strong axisymmetric initial tex-
ture in Zr measured by EBSD. All three measured textures
contained a large number of crystal orientations. The MTEX
package (Bachmann et al., 2010) in MATLAB was used for
plotting the pole figures in this paper.

Mechanical response was also taken from prior litera-
ture for Cu from Knezevic et al. (2014d), for AA6016 from
Tomé et al. (2002), and for Zr from Beyerlein and Tomé
(a) (b)

Fig. 1. Experimentally measured pole figures showing
(2008), and will be shown in the results section of the
paper.

While accommodating imposed plastic strains, grains in
polycrystalline metals reorient to preferred crystallo-
graphic orientations; as a result, distribution changes. To
capture the effect of texture evolution, we employ the
visco-plastic self-consistent (VPSC) polycrystal plasticity
model. It is this code that links the behavior of individual
single crystals to that of the polycrystalline. The operating
slip systems in Cu and AA6016 are f111gh1�10i Prismatic
slip f1 �100gh11 �20i, pyramidal slip f10 �11gh�1 �123i, and
the most commonly observed twinning modes,
f10 �12gh10 �1 �1i and f11 �22gh11 �2 �3i, were considered as
operative deformation mechanisms in Zr. VPSC is devel-
oped to treat these and other physical processes within
single crystals (i.e., multiple slip modes, twinning modes,
dislocation density evolution (Ardeljan et al., 2014;
Beyerlein and Tomé, 2008; Knezevic et al., 2013b, 2012a,
2014b, 2013e), twin nucleation (Beyerlein et al., 2011b;
Niezgoda et al., 2014), twin reorientation (Beyerlein
et al., 2011a, 2007; Proust et al., 2007), secondary twinning
(Knezevic et al., 2015) and detwinning (Knezevic et al.,
2013a; Proust et al., 2010, 2009).) Within VPSC, there are
also multiple options for hardening, including thermally
activated dislocation density laws (Beyerlein et al.,
2011b; Knezevic et al., 2014e) and the phenomenological
Voce hardening law (Tomé et al., 1984). We elected to
use the Voce law for FCC metals and the dislocation density
law for Zr. The hardening parameters to predict stress–
strain response and texture evolution were taken from
Knezevic et al. (2014d) for Cu, from Tomé et al. (2002)
for AA6016, and from Beyerlein and Tomé (2008) for Zr.
initial texture for (a) OFHC Cu and (b) AA6016.



Fig. 3. Texture hull in the first three dimensions of the Fourier space for (a) cubic and (b) hexagonal materials. Each point in these convex and compact hulls
represents a distinct ODF. Initial ODFs for the Al, Cu, and Zr and the fitting paths for the Al and Zr ODFs are shown in the respected hulls. The algorithms used
in this work successfully fit the targeted initial ODFs.

Fig. 4. Accuracy of an ODF representation defined by the texture difference index (TDI) as a function of the number of dimensions used for the
representation to a large number of dimensions defined by l for (a) cubic and (b) hexagonal structure. TDI is calculated as the difference between the initial
ODFs represented using l = 16 for FCC and l = 20 for HCP and the same ODFs represented using a given l.

Fig. 5. TDI calculated as the difference between the initial full-size ODF and reduced-size ODFs after deformation in rolling to a strain of 0.5 for (a) cubic and
(b) hexagonal materials.
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3. Computational procedures for compaction of
crystallographic texture

In this section, we present fundamentals of spectral
representation, algorithms for finding the closest
reduced-size ODF to a target ODF that is within the range
of a reduced-size ODF defined by a predetermined set of
crystal orientations, and quantitative measures for texture
differences. The methodology for data compaction of the
statistical texture data is to transform the crystal orienta-
tions of the experimental texture and a reduced-size, judi-
ciously chosen texture data set into the Fourier space as
coefficients of a series involving a GSH basis. The impor-
tance of this series representation is that the linearity of
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Fig. 6. Pole figures showing the reduced ODFs represented with 36, 153, 400, and 825 weighted orientations for (a) OFHC Cu and (b) AA6016.

(a) (b)

(d)(c)

Fig. 7. Pole figures showing the reduced ODFs represented with (a) 128, (b) 432, (c) 1024, and (d) 1600 weighted orientations for Zr.
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the basis can be exploited to construct a linear combina-
tion of a compact set of representative orientations to
model the experimental texture.
3.1. Representation of ODF using the GSH functions

ODF, f(g), is the normalized probability density associ-
ated with the occurrence of the crystallographic orientation,
g, in the sample. It can be mathematically expressed as:
dV
V
¼ f ðgÞdg;

Z
FZ

f ðgÞdg ¼ 1 ð1Þ
where V denotes the total sample volume and dV is the sum
of all sub-volume elements in the sample associated with a
lattice orientation lying within an incremental invariant
volume, dg, of a given orientation, g. The FZ refers to a funda-
mental zone of an orientation space containing the com-
plete set of physically distinct orientations that can occur



153Measured 400 825
(a)

(b)

Fig. 8. Pole figures showing predicted texture for Cu after (a) simple compression (SC) to a strain of 0.25 and (b) rolling to a strain of 0.25. The simulations
were performed using the measured initial texture and the reduced initial textures represented with 153, 400, and 825 weighted orientations.

Measured 153 400 825
(a)

(b)

Fig. 9. Pole figures showing predicted texture for AA6016 after (a) simple compression to a strain of 0.5 (SC) and (b) rolling to a strain of 0.5. The
simulations were performed using the measured initial texture and the reduced initial textures represented with 153, 400, and 825 weighted orientations.

1 The first symmetry refers to symmetry at the crystal level, while the
second refers to symmetry at the sample scale.
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in the sample (Bunge, 1993; Kalidindi et al., 2009). The ori-
entation, g, can be described using any of the established
representations, including a matrix of direction cosines, a
set of Euler angles (Bunge, 1993), an angle-axis pair
(Frank, 1987), a Rodriguez vector (Neumann, 1991), and a
set of quaternions (Takahashi et al., 1985). These represen-
tations are equivalent and require the specification of three
independent parameters to describe a given crystal orienta-
tion. Consequently, the orientation space of interest reduces
to a three-dimensional space. In this work, we used the
Bunge-Euler space for the orientation space and the
Bunge-Euler angles to describe given crystal orientations.
The crystal orientation is an ordered set of three rotation
angles that transform the crystal local frame to the sample
reference frame, i.e., g ¼ ðu1;U;u2Þ. The main advantage
of the Bunge–Euler space is that the rotation angles are
inherently periodic.

Any ODF can be expressed efficiently in a Fourier series
using GSH functions (Bunge, 1993) as:

f ðgÞ ¼
X1
l¼0

XMðlÞ
l¼1

XNðlÞ
m¼1

Flm
l Tlm

l ðgÞ ð2Þ
where Tlm
l ðgÞ denotes the GSH functions and Flm

l are Fourier
coefficients uniquely representing the ODF. The GSH are
known to be the most compact Fourier basis requiring
the least number of Fourier coefficients for describing
ODF and the dependence of various material properties
on ODF (Fuentes-Cobas et al., 2013; Kalidindi et al., 2009;
Knezevic and Kalidindi, 2007) because they can be sym-
metrized to reflect various crystal and sample symmetries.
The adopted notations for the symmetrized GSH functions

are __Tln
l ðgÞ for cubic, _€Tlm

l ðgÞ for cubic-orthorhombic,1 _Tln
l ðgÞ

for hexagonal, and €Tlm
l ðgÞ for hexagonal-orthorhombic crys-

tals (Bunge, 1993). The limits M(l) and N(l) respectively
depend on selected crystal and sample symmetry (Bunge,
1993). These limits define the number of dimensions consid-
ered for the representation of an ODF in an infinite dimen-
sional Fourier space. We will consider the following l
values for cubic metals, l = 6, 8, 10, 12, and 16 and l = 6, 8,
10, 12, 14, 16, and 20 for hexagonal metals. The correspond-
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Fig. 10. Pole figures showing predicted texture of Zr deformed at 450 K to a strain of 0.3 in (a) in-plane compression (IPC), (b) in-plane tension (IPT) and (c)
through-thickness compression (TTC). The simulations were performed using the measured initial texture and the reduced initial textures represented with
128, 432, 1024, and 1600 weighted orientations.
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ing numbers of non-zero frequency dimensions in the Four-
ier space are 7, 12, 22, 36, and 75 for cubic and 14, 27, 43, 69,
105, 146, and 273 for hexagonal metals. The Fourier coeffi-
cients beyond these prescribed thresholds vanish. Typically
used values of l in literature are about 10 or 12 (Knezevic
and Kalidindi, 2007). The less symmetric (HCP) crystal struc-
ture demands a higher dimensional Fourier space than the
more symmetric cubic crystal (Bunge, 1993; Fast et al.,
2008). Eq. (2) allows visualization of ODF as a single point
in an infinite dimensional Fourier space with coordinates
given by �Flm

l . If we define kFlm
l as the Fourier coefficients of

a single crystal, k, it is then possible to define a convex
and compact texture hull representing the complete set of
all physically realizable ODFs (Adams et al., 2001), M, as:

M¼ Flm
l

�Flm
l ¼

X
k

ak
kFlm

l ;kFlm
l 2Mk;ak� 0;

X
k

ak ¼1

�����
( )

ð3Þ
where:

Mk ¼ kFlm
l

kFlm
l ¼

1
ð2lþ 1Þ T

lm0
l ðg

kÞ; gk 2 FZ
����

� �
ð4Þ

The prime symbol (0) in the superscript of the GSH func-
tion in Eq. (4) denotes the complex conjugate. The bar on
top of the Fourier coefficients in Eq. (3) indicates an aver-
aged value of the Fourier coefficients based on the weights
of crystal orientations in a given ODF.

The hulls for cubic–orthorhombic and hexagonal–
orthorhombic textures are shown in the first three dimen-
sions of the Fourier subspace in Fig. 3a and b, respectively.
Note that any physically realizable texture has to have a rep-
resentation inside the corresponding hull. Fig. 3a and b also
depict points corresponding to the measured textures
shown in Figs. 1 and 2. These measured textures are used
as the full-size target textures for which, new representa-
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Fig. 11. Pole figures showing predicted texture of Zr deformed at 76 K to a strain of 0.3 in (a) in-plane compression (IPC), (b) in-plane tension (IPT) and (c)
through-thickness compression (TTC). The simulations were performed using the measured initial texture and the reduced initial textures represented with
128, 432, 1024, and 1600 weighted orientations.
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tions using reduced-size textures are sought using algo-
rithms described in the next section.

3.2. Algorithm for finding the closest reduced-size ODF to a
target full-size ODF

An ODF function is a point in an infinitely dimensional
Fourier space, defined by the average value of the Fourier
coefficients. Fig. 3 depicts several of such points corre-
sponding to the measured ODFs for Cu, AA6016, and Zr.
We will call these points the target points. We demonstrate
that any target point can be fitted in the Fourier space by a
significantly smaller set of weighted crystallographic ori-
entations. The task at hand is to develop a procedure for
finding the closest reduced-size ODF defined by a predeter-
mined set of orientations to a target full-size ODF by
adjusting the weights of predetermined orientations. By
definition, an equivalent ODF to a given ODF is the ODF
whose Fourier coefficients are identical to those of the
given ODF to a prescribed value of l and a tolerance. The
reduced-size ODFs contain a small number of representa-
tive orientations whose weights are adjusted during the
finding process. We will call these small sets of orienta-
tions the sets of master orientations.

3.2.1. Binning of FZs for establishing sets of master
orientations

The sets of master orientations are selected from an
appropriate FZ. The FZ is discretized into bins with the con-
straint that each bin must have equal probability. The equal
probability bins or equal volume bins are created by enforc-
ing the invariant volume integrals to each bin using



Fig. 12. Difference in the deformed textures simulated using the measured initial texture and the reduced-size initial textures represented (a) using 153,
400, 825, 1476, 2401, and 7300 weighted orientations for FCC and (b) using 432, 1024, 1600, 2000, 3456, and 5488 for HCP. Fittings of the initial ODFs were
carried out using the GSH representation with l = 12 for FCC and l = 14 for HCP.

Fig. 13. Measured and simulated stress–strain responses in compression for (a) OFHC Cu and (b) AA6016. Simulations were performed using measured
initial ODF and reduced initial ODFs as indicated in the figure.
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dV ¼
R

DX dg ¼
R

Du2

R
DU

R
Du1

sinU du1dUdu2. The sinU term

accounts for the non-linearity of the Bunge-Euler space
when calculating the probability of each bin. The binning
procedure starts by dividing the u2 direction of the FZs by
specifying a number of divisions, N. Next, iterations are per-
formed to enforce equal areas, or dA ¼

R
Du2

R
U sinU dUdu2,

in the ðu2;UÞ plane. Subsequently, we divide the U direc-
tion by specifying a number of divisions, M. Again, the areas,
dA ¼

R
Du2

R
DU sinU dUdu2, in the ðu2;UÞ plane are itera-

tively enforced to be equal. Finally, the u1 direction is
divided by specifying a number of divisions, L. In this case,
no iterations were required because there is no distortion
of the Bunge-Euler space in the u1 direction. The values of
N, M, and L define the coarseness of the mesh over the FZ
and therefore define the number of master orientations in
the sets. There are many choices to select an orientation
per given bin. Moreover, the adopted binning scheme
results in elongated bins in the U direction. The effect of
equivolume binning in a five dimensional grain boundary
space and associated angular distance between orientations
in a given bin on grain boundary distributions has recently
been studied in Glowinski and Morawiec (2014). A more
sophisticated approach for selection of orientations based
on the kernel density estimation technique over the
binning-based method (Saylor et al., 2003) was found to
substantially decrease the inherent error in computed dis-
tributions caused by equivolume binning (Glowinski and
Morawiec, 2014). Here, the desired level of data compaction
was achieved by simply selecting the master orientations to
be corners of the invariant volume bins. The resulting ODF
of master orientations with equal weights is conveniently
random. Future work will explore more sophisticated ways
for the selection of the master sets, which could potentially
result with even greater compaction.

Because of the periodic nature of the GSH base func-
tions, the discretization of each angle further followed
the theory behind the Nyquist sampling theorem
(Vaidyanathan, 2001). The Nyquist sampling criterion
states that a discretization of a given function has to be
finer than the frequency of a selected base function. There-
fore, to robustly represent every unique linear combination
of the Fourier coefficients within the convex hulls previ-
ously described, the added consideration for the binning
scheme was the frequency associated with the GSH func-
tions. For the discretization of the HCP FZ, a heuristic
approach was employed to eliminate redundancies for
the most compact master sets. The heuristic varied the



Fig. 14. Measured and simulated stress–strain responses of Zr at two temperatures, 450 and 76 K, for in-plane tension (IPT), in-plane compression (IPC),
and through-thickness compression (TTC). Simulations were performed using measured initial ODF and reduced initial ODFs as indicated in the figure.
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bin aspect ratios in each direction to estimate the GSH fre-
quency while enforcing the invariant volume.

The established sets of master orientations contained
Ncrys = 36, 153, 400, 825, 1476, 2401, and 7300 orientations
for cubic metals and Ncrys = 128, 432, 1024, 1600, 2000,
3456, and 5488 orientations for HCP metals. After appro-
priate weight assignment to each master orientation, these
sets become reduced-size ODFs. If crystal orientations in
these sets are of equal weight, the resulting ODFs are ran-
dom. The Fourier coefficients of the random ODFs are in
the origin of the hull (see Fig. 3). Any deviation of equal
weighting of master orientations in the sets results in a
non-random ODF and a shift from the hull origin.

In closing this section, we reflect on the following. The
convex microstructure hull contains all physically realiz-
able textures, and theoretically, the orientation set that
will provide the most efficient texture reconstruction is
one that is comprised of crystal orientations with Fourier
coefficients that form the boundary for this convex region
up to the desired number of dimensions. These orienta-
tions were termed as the principle orientations in our pre-
vious work (Fast et al., 2008). In this earlier work, the
Fourier coefficients corresponding to these principle orien-
tations are used to calculate elastic and yield stress proper-
ties that are subsequently utilized in design and
optimization of structural components made of polycrys-
tals. However, establishing a set of principle orientations
corresponding to the vertices of the hull was only possible
up to a certain number of dimensions. The number of nec-
essary dimensions in a truncation of Fourier series is dic-
tated by the material property in consideration. As an
example, only four dimensional Fourier space for FCC and
nine dimensional Fourier space for HCP are necessary for
calculation of elastic properties. The main challenge
encountered in using the concept of principle orientations
in the present work is finding the vertices of the texture
hull in fairly large dimensional Fourier spaces. A more
sophisticated methodology for finding these vertices in
many dimensions will be sought in future works.

Next, we describe two procedures for obtaining
reduced-size ODFs. The goal of these procedures is to
match the average Fourier coefficients of a given target
ODF and a linear combination of Fourier coefficients corre-
sponding to master orientations.

3.2.2. Linear programming procedures for finding the closest
reduced-size ODF defined by sets of master orientations to a
target full-size ODF

Calculation of a reduced-size ODF is a linear programing
problem that finds the closest point to a target point
using a linear combination of available points in a
multi-dimensional space. The target point corresponds to
Fourier coefficients of the target full-size ODF and the clos-
est point is the weighted average of Fourier coefficients of
the reduced-size ODF. A solution is available as long as the
target point is within the hull of the reduced-size ODF
defined by a master set of orientations. In our calculations,
we considered l = 6, 8, 10, 12, and 16 with the correspond-
ing 7, 12, 22, 36, and 75 numbers of dimensions in the
Fourier space for FCC and l = 6, 8, 10, 12, 14, 16, and 20
with the corresponding 14, 27, 43, 69, 105, 146, and 273
number of dimensions in the Fourier space for HCP. The
number of dimensions used in the procedure influences
the accuracy of representation and computational time
involved in the procedure. The more dimensions used
imply more accurate representations and longer computa-
tional times.

The equation and constraints to find the probability dis-
tribution of master orientations matching an initial ODF in
Fourier space are:
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F�lm
l ¼ kakFlm

l ;
XNcrys

k

ka ¼ 1;0 � ka � 1 ð5Þ

In Eq. (5), kFlm
l , are Fourier coefficients of individual ori-

entations in a master set. We employ two different linear
programming procedures aimed at establishing weights,
ka, of the individual master orientations. We implement a
so-called greedy algorithm and use a MATLAB ‘‘linprog’’
function (Matlab, 2013) to solve the linear programming
problems. The greedy algorithm minimizes a distance
between the target point, F�lm

l , (a given full-size ODF) and
the current point, �Flm

l , (a reduced-size ODF):

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

l

X
l

X
m

F�lm
l � ð1� kaÞ�Flm

l � kakFlm
l

� �2
s

ð6Þ

The algorithm starts from a point in the hull correspond-
ing to an average value of Fourier coefficients over master
orientations in a given set, �Flm

l . All crystals in the set have
equal weight, a. Next, the algorithm searches for a crystal
from the same set, kFlm

l , that minimizes the distance, d.
Finally ka is calculated based on the following condition

0 ¼ @d=@a and updated ensuring
PNcrys

k
ka ¼ 1;0 � ka � 1,

where k goes from 1 to the specific number of master orien-
tations in the set. The algorithm stops when d becomes less
than 10�8. The MATLAB ‘‘linprog’’ function is based on the
interior point method, and the system of equations is mod-
ified to accommodate this solver. The system of equations is
reformulated using equality constraints,

kakFlm
l � F�lm

l � Plm
l þ Qlm

l ¼ 0;
XNcrys

k

ka ¼ 1 ð7Þ

inequality constrains,

ka � 0; ka � 1; Plm
l � 0; Qlm

l � 0 ð8Þ

and the objective function for minimization,X
l

X
l

X
m

Plm
l þ Qlm

l

� �
ð9Þ

In this formulation, Plm
l and Qlm

l are slack variables. The
slack variables are utilized because they allow the linear
system to become an equality constraint. These slack vari-
ables are bounded so that they cannot stay ‘‘hidden’’ when
minimizing their sum. They are always positive and guar-
anteed by the bounds; however, in the equality constraint,
addition and subtraction means that there is more flexibil-
ity when arriving at a solution.

Fig. 3a and b show the fitting paths for FCC and for HCP,
respectively obtained by the two algorithms. Although the
paths differ because the algorithms are different, the result-
ing ODFs and pole figures are indistinguishable. The
MATLAB ‘linprog’ function is recommended to be used as
the first choice because it is substantially faster than the
greedy algorithm. It usually finds a solution is several sec-
onds. In cases where it is unable to find a solution, we
employ the slower but stable greedy algorithm. In the next
section, we introduce a new measure termed here as the
texture difference index (TDI) to quantify the errors involved.
3.3. Quantitative texture difference index

In order to quantify the accuracy of the spectral repre-
sentation as a function of the dimensions in an infinite
Fourier space, we have defined an appropriate normalized
error metric expressed as:

TDI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
FZ ðf

�ðgÞ � �f ðgÞÞ2dg
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

FZ ðf
�ðgÞ � ~f ðgÞÞ

2
dg

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
l

P
l
P

m F�lm
l � �Flm

l

� �2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

l

P
l
P

m F�lm
l � ~Flm

l

� 	2
r ð10Þ

We call this metric the texture difference index (TDI). In
Eq. (10), f �ðgÞdenotes a given target ODF of interest typically
measured using diffraction or EBSD techniques and �f ðgÞ rep-
resents the reduced-size ODF using the procedure described
in the previous section. The normalization factor has been
selected to represent the largest distance in the hull from
f �ðgÞ. The furthest ODF and the corresponding Fourier coef-

ficient are denoted as ~f ðgÞ and ~Flm
l , respectively. This ODF is

typically a single crystal. While other error definitions can
be defined (Baudin et al., 1995; Pospiech et al., 1994), the
adopted definition here is convenient because a TDI value
of zero indicates identical ODFs, while a value of one indi-
cates maximum theoretical disagreement between two

ODFs. Note also that
R

FZ f �ðgÞdg ¼
R

FZ
~f ðgÞdg ¼

R
FZ

�f ðgÞdg ¼ 1.
Fig. 4a and b depict the TDI values as a function of l for

a given ODF for FCC and HCP, respectively. The values
were calculated as the difference between the initial ODFs
represented using l = 16 for FCC, l = 20 for HCP, and the
same ODFs represented using a given l. The accuracy of the
representation improves with the number of dimensions
considered in an infinite Fourier space.

Fig. 5 illustrates the variation of the TDI with l for
deformed textures in rolling for FCC and HCP. It can be seen
that the values saturate at l = 12 for FCC and l = 14 for HCP.
In other words, taking into account more dimensions will
slightly improve the accuracy at the expense of computa-
tional cost. To balance accuracy with the computational
efficiency of our finding the closest point code, we chose
l = 12 for FCC and l = 14 for HCP. Based on Fig. 4, the level
of error of the reduced-size initial texture is less than 3%.

We will use the TDI as a metric to seek the minimum
number of crystallographic orientations necessary for accu-
rate modeling of the texture evolution and the mechanical
response in the case studies presented in the next section.
Calculations of TDI were performed exclusively, with l = 16
for FCC and l = 20 for HCP.
4. Results and discussion

We present several case studies carefully designed to
validate the procedures described in previous sections.
We study two distinct crystal structures, including two
FCC metals, pure Cu and AA6016 alloy, and an HCP metal,
Zr. The studied FCC metals have different starting textures
and exhibit different mechanical responses. While the FCC
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metals deform with one slip mode, the HCP Zr deforms by
multiple slip and twinning modes. To isolate deformation
of Zr by multiple slip models, the simulations were
performed at an elevated temperature. These conditions
suppress deformation twinning and promote deformation
by slip. In the most complicated case, we simulated defor-
mation of Zr at a liquid nitrogen temperature. These condi-
tions promote deformation twinning. We first compared
the reduced-size initial ODFs with the experimental ODFs.
Next, we compared texture evolution predictions at
various strain levels and under different loading conditions
simulated using the reduced-size ODFs and the measured
full-size ODFs. Finally, we compared predictions of the
anisotropic stress–strain responses simulated with the
reduced-size ODFs and the measured full-size ODFs.

Fig. 6 compares results of the procedure applied to the
two initial FCC textures shown in Fig. 1. The fitting was
performed using sets of 36, 153, 400, and 800 master
orientations. It can be seen that the set of 36 master orien-
tations does not accurately capture features of the initial
target ODFs and therefore will not be considered further.
However, the set of 153 master orientations accurately
qualitatively reproduce features of the initial ODFs. Simi-
larly, Fig. 7 compares pole figures of the measured and
reduced-size textures for HCP Zr. It can be seen that even
the smallest set of 128 weighted master orientations qual-
itatively reproduce the measured texture well.

As a next test for the developed procedures, we simu-
late texture evolution for Cu and AA6016 in rolling and
simple compression using VPSC. Figs. 8 and 9 show the
predicted textures via the most relevant f011g pole for
simple compression and f111g pole for rolling for both
Cu and AA6016 deformed to strain levels of 0.25 and 0.5,
respectively. Qualitatively, it can be seen that all the
features in the pole figures obtained with the measured
textures are captured with the set of 153 weighted master
orientations. Figs. 10 and 11 show the predicted basal and
prismatic pole figures for Zr. The initial measured texture
and the corresponding reduced-size textures were
deformed in compression along the in-plane (IPC) and
through-thickness (TTC) directions and in tension along
the in-plane direction at 450 K and 76 K to a strain of 0.3.
While deformation at 450 K is mainly accommodated by
slip, the deformation at 76 K is dominated by twinning,
especially in IPC. Qualitatively, the results indicated that
the representation with the set of 432 master orientations
captures texture evolution well. Therefore, we conclude
that 432 weighted orientations are sufficient to represent
initial texture for HCP metals deformed by slip and
twinning.

Fig. 12 quantitatively shows texture differences
between predicted texture evolutions using the full initial
dataset and the reduced sets. It can be seen that the error
between the minimum set of master orientations deter-
mined here to be 153 for cubic metals and 420 for hexag-
onal metals and the full data sets is very small. The plots in
Fig. 12 provide flexibility in making trade-offs between
accuracy and computational speed.

Finally, in Figs. 13 and 14, we compare the stress–strain
curves predicted using measured initial texture and the
reduced data sets. Excellent agreement can be seen. Since
the cubic metals considered here deform only by slip and
are more isotropic, we present a stress–strain response in
compression along the normal direction of the respected
sheets. For HCP Zr we present the IPC, IPT, and TTC curves
at 450 K and 76 K. These tests show that a dramatic data
compaction is possible using the generalized spherical har-
monics without losing accuracy in the predictions of the
overall mechanical response and texture evolution.

As mentioned earlier, the computing time involved in
mean-field crystal plasticity codes such as the VPSC code
increases linearly with the number of grains considered
in simulations. Therefore, the reduction in computing time
is directly proportional to the reduction in number of
grains considered in a simulation. The standalone versions
of polycrystal plasticity codes facilitate simulations of
relatively simple monotonic deformation processes under
homogeneous boundary conditions. To enables simula-
tions of complex, non-monotonic deformation process
with heterogeneous boundary conditions these codes are
embedded within finite elements. The procedure devel-
oped in the present paper is primarily intended to increase
efficiency of these codes. The VPSC model has recently
been integrated within finite elements (Knezevic et al.,
2013d). For the specific example mentioned in the intro-
duction of the present paper that utilized the finite
element VPSC implementation, the computational time
involved would reduce by over six times (from 60 h to
approximately 10 h) if the number of grains considered
per FE integration point would drop from 1000 to 153.
5. Summary and conclusions

Microstructure based simulations of metal forming
processes and microstructure sensitive designs for material
performance optimization at the macro-scale are impracti-
cal in part because of the need to store many state vari-
ables associated with microstructure data. In this work,
we have successfully developed procedures for the reduc-
tion of large statistical distributions of crystallographic
texture data to computationally manageable distributions.
The developed procedures are based on the spectral repre-
sentation of texture using generalized spherical harmonic
functions. Compact sets of master orientation were
selected based on the Nyquist sampling theorem from
the orientation space for cubic and hexagonal structures
and shown sufficient for reducing any ODF by formulating
a constrained linear optimization in Fourier space. Our case
studies demonstrated the power of the spectral represen-
tation and the benefits of the linear Fourier space when
dealing with large data sets. We accurately modeled
microstructure and material response after reducing mil-
lions of crystal orientations to significantly smaller sets
of weighted master orientations. The procedures were
applied to both cubic and hexagonal crystal structures
and shown to work well for metals deforming with both
slip and twinning mechanisms. The minimum set of
master orientations was determined to be 153 for cubic
metals and 432 for hexagonal metals. Using these numbers
of orientations, the simulated stress–strain response and
texture evolution were nearly indistinguishable from those
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simulated using full data sets. A new measure for quantita-
tive ODF comparisons that takes advantage of the spectral
representations was introduced. This measure was termed
the texture difference index (TDI) and represents a suitable
normalized distance between two ODFs in the Fourier
space. Using this quantitative measure, we have shown that
the error involved in simulations using the minimal sets
of orientations is negligible. In addition, the methodology
provided flexibility in making trade-offs between accuracy
and computational speed.

The established procedures can significantly improve
computational efficiency of microstructure-sensitive simu-
lations and help effectuate microstructure informed mate-
rials design, and thus, contribute to a genesis of new
material development.
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