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ABSTRACT 
Performing microstructure sensitive metal-forming 

simulations is widely recognized as a computational challenge 
because of the need to store large sets of state variables related 
to microstructure data. We present a rigorous methodology for 
the compaction of microstructural data associated with a 
material point and show that the statistical distributions of 
microstructure of any size can be compacted to several hundred 
grains. The methodology is based on the spectral representation 
of microstructure distribution functions through the use of 
generalizes spherical harmonics. Subsequently, we present a 
computational framework aimed at dramatically reducing time 
needed for microstructure sensitive simulations of metal 
forming processes. The framework is based on a combination 
of the recently developed numerical implementations of crystal 
plasticity models in the spectral representation for obtaining the 
response of single crystals and specialized computer hardware 
that integrates a graphics-processing unit. We apply these two 
methodologies on a plane strain compression case study and 
obtain speedup factors exceeding three orders of magnitude.   

 
INTRODUCTION 

Crystal plasticity (CP) constitutive laws are highly 
desirable for performing accurate simulations of metal forming 
processes because they are based on crystallographic 
deformation mechanisms and account for evolution of the 
microstructure and crystallographic texture during deformation. 
These constitutive laws are important for understanding 
evolution of the underlying microstructure and associated 
effects on the anisotropic stress-strain response [1]. The single-
crystal itself is anisotropic and a non-random distribution of 
single-crystals (i.e. crystallographic texture) leads to 
anisotropy. Therefore, understanding and modeling 
deformation should be based on the distribution of grain 

orientations and micro-scale deformation mechanisms 
associated with the crystal structure. Several approaches have 
been developed to link the grain level mechanical response to 
the response of a polycrystalline aggregate including self-
consistent [2], CP finite-element (FE) models [1], and Taylor-
type models [1]. 

A number of CP models have been integrated into FE 
simulation tools and successfully applied to simple 
compression and tension tests, bending, cup-drawing, sheet 
hydroforming  and bulk forming [3,4]. However, these models 
have not been widely adopted by metal forming community 
because of prohibitive computational efforts and time involved 
in process simulations. For example, the computational time 
involved in simulating a simple compression up to a strain of 
0.2 with about 1000 elements and 1000 grains at an integration 
point is about 60h on a regular PC [3]. Clearly significant 
speedups are required to render metal forming simulations 
involving crystal plasticity constructive laws practical.   

Several strategies have been explored to speed up the 
crystal plasticity calculations. Database approaches that stores 
the main characteristics of the crystal plasticity solutions in the 
form of generalized spherical harmonics coefficients are 
described in [5]. A process plane concept, based on proper 
orthogonal decomposition in Rodrigues–Frank space, has been 
presented in [6]. Other attempts to improve efficiency of the CP 
simulations rely on the adaptive sampling algorithms and 
building a database that constantly updates itself [7]. Here, the 
database of CP responses was populated as a function of 
process parameters over which the responses can be 
interpolated. The adaptive sampling framework is not suitable 
in the case of anisotropic materials that show significant 
changes in the microstructure during deformation and/or 
frequent strain path changes.  

In past several years we have invested significant efforts in 
developing efficient numerical schemes and successfully 
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developed a databases containing discrete Fourier transforms of 
the crystal plasticity solutions [8, 9]. The work showed that CP 
theories can be formulated using a spectral representation that 
allows for up to two orders of magnitude acceleration of 
relevant simulations.  

The spectral methods have been used successfully in many 
other fields of science and engineering with dramatic gains in 
computational efficiency including representation of texture 
[10] and material properties [11-13]. 
In this paper, we utilize the spectral representation to reduce 
large data sets of microstructural material data in the form of 
statistical distributions to computationally manageable but 
representative statistical distributions. We show that a set of 
microstructural data of any size can be reduced to a few 
hundred grains and accurately represent the material response. 
We then present a high-performance implementation of the 
spectral crystal plasticity formulation on a computational 
platform integrating one graphic-processing unit (GPU). The 
new implementation takes the advantage of an efficient GPU8 
algorithm for matrix-matrix multiplication [14] and results in 
major improvements in computational speed exceeding three 
orders of magnitude over the conventional numerical schemes. 
The framework presented here obtains the response of a 
polycrystalline aggregate associated with a single finite element 
(FE) integration point.  
 
COMPACT REPRESENTATION OF 
CRYSTALLOGRAPHIC TEXTURE  
 In our approach a measured distribution functions of the 
crystallographic orientations, f(g), is represented by Fourier 
coefficients using generalized spherical harmonics [15]. 
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In general, any texture function is a point in the 

multidimensional Fourier space, defined by the Fourier 
coefficients [16, 17]. We will call this point as the target point. 
The target point is obtained by averaging the Fourier 
coefficients of full set of crystal orientations. The number of 
dimensions depend on the value l and therefor the accuracy of 
representation. It has been determined that when l = 16, the 
representation is indistinguishable from an exact value of the 
function. Figure 1 shows the accuracy of the representation 
with l < 16 [15]. We defined a texture difference index (TDI) as 
the normalized distance from the target to a point of 
reconstructed point. In our approach, we recognized that any 
target point can be reconstructed in the Fourier space by a 
significantly smaller set of weighted crystallographic 
orientations. To this end, we choose several sets of orientations 
in a way that they cover entire Euler space of orientations and 
developed a fitting scheme. The sets consisted of 153, 400, 
825, and 1476 orientations. The fitting scheme is a linear 
programing code for fitting a point in a multi-dimensional 

space. The target point as well as the reconstructed point were 
calculated for l = 6, 8, 10, 12, and 16 (see Fig. 1). The 
corresponding number of dimensions in the Fourier space was 
7, 12, 22, 36, and 75. To balance accuracy of the reconstruction 
and the computational efficiency of our fitting code, in this 
work we chose l = 10 (22 dimensions). Figure 1 shows that the 
level of accuracy of the reconstructed texture function relative 
to the target point for l = 10 is about 5%. Fitting a point in the 
multi-dimensional space corresponding to the l = 16 level of 
accuracy was computationally very intensive.  

We seek for the minimum number of crystallographic 
orientations necessary for accurate modeling of the mechanical 
material response. Figure 2 compares the predicted mechanical 
response in the form of stress-strain curves between original 
full data set and the reduced data set using 400 and 825 
orientations. Figure 2 shows the pole figures indicating that the 
representation the full set using 153 orientations is not accurate 
but it is accurate using 400 orientations. Therefore, we 
conclude that 400 weighted orientations associated with each 
material point are sufficient to represent any texture.  

 
Figure 1 Accuracy of texture representation as a function of 
number of dimensions. 
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Figure 2 Comparison of the stress-strain response computed 
using the full data set and two reduced data sets. Also, the 
measured curve in shown for Cu.  

 

 

 
 
Figure 3 Pole figures for the full set of texture data (top row) 
and reduced data sets corresponding to the following number of 
orientations 153, 400, 825, 1476, respectively.  
 

 
A HYBRID CPU-GPU HIGH-PERFORMANCE 
COMPUTATIONAL PLATFORM FOR CRYSTAL 
PLASTICITY 

Figure 4 shows a work distribution on a hybrid CPU-GPU 
computer architecture intended for performing future tractable 
multi-scale process simulations [18]. The architecture is a 
computer cluster consisting of Linux nodes that individually 
integrate multi-core processors (CPUs) and Graphics 
Processing Units (GPUs). The workload can be distributed 
such that the grain level calculations are performed on the GPU 

threads. The motivation for using a GPU card comes from the 
fact that the card can have thousands of cores and teraflop 
performance. Next, the meso-scale polycrystalline 
homogenizations are performed on the CPUs of individual 
slave Linux nodes. Note that mesh of a finite element (FE) 
model can be divided into a number of mesh domains. The 
slave Linux nodes operate on these mesh domains and are 
controlled by the master Linux node. Finally, the master Linux 
node obtains the macroscopic component level response. 
Although parallelization with only CPUs is possible, this would 
require a significantly more expensive computer cluster as 
opposed to a simple and cheap computer workstation with 
GPUs.  
 

 

 
 
Figure 4 Work distributions on a hybrid CPU-GPU computer 
architecture aimed at performing tractable multi-scale process 
simulations. Domains of an FE model are distributed over the 
number of available nodes in the computer hardware. The 
response of a polycrystalline aggregates is obtained using 
multiple processors (CPUs) available per node. The grain-scale 
response is calculated on the Graphics Processing Unit (GPU) 
cards consisted of streaming multiprocessors (SMs) containing 
threads.  
 
 
COMPUTER IMPLEMENTATIONS OF SPECTRAL 
CRYSTAL PLASTICITY ON A GPU CARD 

Graphical processing units (GPUs) were originally 
developed to meet the computational needs of algorithms for 
rendering computer graphics. The GPU technology has rapidly 
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grown resulting in teraflop peak performance and at a cost of a 
few thousand dollars. A GPU uses a master-slave paradigm in 
which the GPU operates as a slave under the control of a host 
CPU processor. In our implementation the host processor is a 
Linux node that features an Intel Xeon CPU X5660 at 2.67GHz 
and the slave is an NVIDIA Tesla K20 GPU card with 6GB of 
memory and 2496 CUDA cores. The Tesla GPU card has a 
peak performance of 3.52 teraflops in single-precision floating-
point operations and 1.17 teraflops in double-precision 
operations. The board memory of our GPU card can facilitate 
calculations with a maximum of 131072 crystals if the spectral 
CP calculations are performed with 1024 transforms. The 
addition of memory in hardware can enable the GPU based 
application to run more demanding problems either with a 
larger number of transforms or a larger number of crystals or 
both. Alternatively in smaller memory devices, a tandem of 
GPUs can be used to solve computationally demanding 
problems. Our computer code is written in the Portland Group, 
Inc. (PGI) Compute Unified Driver Architecture (CUDA) 
Fortran programing platform developed by the Portland Group 
in collaboration with NVIDIA. We used double precision in all 
calculations.  

Reaching the peak performance requires a very careful 
programing of the application code. In this work, we adopt a 
divide and conquer approach from the GPU8 algorithm. The 
method is based on the efficient partitioning of multiplying 
matrices into sub-matrices where blocks of threads compute 
resulting sub-matrix and individual threads compute one or 
several elements of the resulting sub-matrix. In order to exploit 
the full potential, it is important to establish the dimension of 
the block threads that yield the best performances. The GPU 
threads are grouped into blocks and the blocks are organized as 
a grid. Kernel invocation requires the specification of the block 
and grid dimensions along with any parameters the kernel 
needs.   

In the core of the spectral CP model is the evaluation of the 
series i.e. the calculation of the components of the deviatoric 

part of the Cauchy stress, σ , the plastic spin tensor, W p , and 

the deformation mode function, 


  for individual grains 

(see Eq. 2). These functions are computed based on the spectral 
representation of the crystal plasticity solutions described in [8, 
19]. B, C, and G are pre-computed constants. Because the 
evaluation of the series is expensive computationally, the 
parallelization of that part of the code is essential. Calculation 
related to the texture evolution, hardening and homogenization 
are inexpensive and take less the 1% of the total time involved.   

Our parallel implementation is executed in two steps. We 
developed a CUDA kernel for each step. The first kernel builds 
the matrix of exponentials while the second kernel evaluates 
the series in the form of a matrix-matrix multiplication. In our 
GPU implementation of the first kernel, four entries of the 
matrix of exponentials were evaluated on a single CUDA 
thread. The matrix elements are independent of each other and 

can be evaluated separately. The size of this matrix is N x M, 
where, M, represents the number of grains (r) in a 
polycrystalline aggregate and, N, is the number of spectral 
amplitudes used. Therefore a total of NxM/4 threads were 
launch on the GPU for the first kernel. In our GPU 
implementation of the second kernel, we multiply the matrix of 
spectral amplitudes with the matrix of exponentials to obtain 
the crystal plasticity field variables:  
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The matrix-matrix multiplication is performed using a divide 
and conquer approach adapted from the GPU8 algorithm. Both 
the matrices are divided into sub-matrices and their 
multiplication results with the calculation of portions of the 
field variable matrix. We obtained the best performance if the 
second CUDA kernel is launched using thread blocks of a size 
of 16x9 where each thread is calculating two elements of the 
resultant matrix. We apply the GPU implementation of the 
spectral crystal plasticity to simulate a plane-strain compression 
(PSC) test and validate the results against the conventional 
model. In this study, a Taylor-type homogenization scheme is 
used to obtain the response of a polycrystalline aggregate. A 
polycrystalline aggregate is represented as a set of grains, each 
characterized by a crystallographic orientation and 
experiencing the same strain. The strain is applied in terms of a 
known velocity gradient tensor, L, identically to all grains 
comprising the polycrystalline aggregate. We emphasize that 
the responses of single-crystal can be homogenized in a 
different way e.g. using the self-consistent models. We consider 
here the case of face-centered cubic (FCC) poly-crystalline 
oxygen-free high conductivity (OFHC) copper. Hardening 
parameters are taken from [1]. While more physically based 
hardening laws exist [20, 21], here we use the simple Voce 
hardening law from [1].  

The Fourier transform amplitudes were obtained in our 
earlier work [8, 19] and used here. This defines the spectral 
approximations of the conventional model for this work. The 
results of the spectral approximations run on the GPU platform 
are compared against those of the conventional model in Figs. 
5 and 6. Figure 5 compares the stress-strain curves obtained 
from the conventional model and a spectral approximation for 
plane strain compression test. It can be seen that the spectral 
approximation compares well with the conventional model. The 
low strain level portion is less accurate because the spectral 
representation model is a rigid-plastic model, while the 
conventional model was an elasto-plastic. The high strain level 
portion is becoming less accurate because the spectral 
interpolation error is accumulating. Figure 6 compares texture 
predictions at a strain of 1.0. It can be seen that our 
implementation successfully reproduces the strain-stress curves 
and texture to large plastic strains. Therefore, the spectral 
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representation of the conventional CP implemented programed 
on a GPU card is an accurate and fast computational 
framework aiming at next-generation large-scale crystal 
plasticity simulations. 

 
 

 
 
Figure 5 Comparison of stress-strain curves obtained using the 
conventional model and the spectral model with 1024 spectral 
coefficients in a plane strain compression test.  
 

 

 
 
Figure 6 Predicted textures in plane strain compression at a 
strain of 1.0, as obtained from the conventional model (top 
row) and spectral approximations of the conventional model 
(bottom row). The initial texture in these simulations was 400 
(see Fig. 3). 

 
In Fig. 7 we show the speedup obtained by GPU parallel 
implementations of the spectral crystal plasticity theory over 
the conventional numerical methods for crystal plasticity. The 
results show an improvement in the efficiency exceeding three 
orders of magnitude. The efficiency of the algorithm improves 
with the increase in the size of the problem. A combination of 

data compaction methodology based on the generalized 
spherical harmonics and the spectral CP programed on GPU 
cards have potential to make practical large-scale forming 
simulations with crystal plasticity constitutive laws.  
 
 

 
 
Figure 7 Speedup by the GPU-based parallelization of the CP 
simulations in the spectral representation over the simulations 
performed using the conventional model.  

 
CONCLUSIONS 

In this paper, we presented a methodology for compacting 
texture data and a high performance implementation of the 
spectral crystal plasticity framework aimed at performing 
computationally tractable metal forming simulations. Data 
compaction was possible using generalized spherical 
harmonics. The high performance implementation takes 
advantage of the advanced GPU8 matrix-matrix multiplication 
algorithms on a specialized hardware integrating one GPU 
card. Case studies involving a Taylor-type homogenization of a 
FCC polycrystalline material show improvements in the 
computational speed more than three orders of magnitude over 
the conventional numerical schemes. The speedup factor 
improves with an increase in number of grains considered in 
the simulations. Therefore, we conclude that synergy of data 
compaction and the spectral crystal plasticity programed on a 
GPU card can render next-generation large-scale forming 
simulations with crystal plasticity constitutive laws possible. 
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