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1. Abstract

The purpose of this project is to reduce a large statistical distribution of metal microstructure

orientations to a manageable distribution to be used in metal forming simulations. Microstructure

sensitive simulations at the macro-scale are impractical, because with so many state variables

associated with material microstructure data, these simulations are extremely computationally

expensive. [5]

The goal was to develop a framework to accurately model plastic material response while repre-

senting the material microstructure in a more compact form, reducing 106 or more microstructure

orientations to a significantly smaller statistical distribution of representative orientations. This

will significantly increase the computational efficiency and make the design process known as mi-

crostructure sensitive design (MSD) feasible for industry applications. [1] This framework is applied

to metals with both cubic and hexagonal structure to validate this approach for slip and twinning

deformation mechanisms.

Performing microstructure sensitive metal-forming simulations is widely recognized as a compu-

tational challenge because of the need to store large sets of state variables related to microstructure

data. This makes the investigation of the accuracy of smaller, representative data sets in these

simulations profitable.

The project accomplished two main goals; the development of an effective fitting algorithm to

generate compacted data sets and validation of the framework for data compaction on metals with

cubic structure, and hexagonal symmetry, with and without twinning. The research was applied

to oxygen-free high-conductivity copper (OFHC Cu) and 6016 aluminum (Al-6016) for application

of the framework to cubic metals. An anisotropic (clock-rolled) zirconium (Zr) texture was used

to develop the framework for hexagonal metals. The minimum accurate data set for cubic was

determined to be 825 orientations and for hexagonal metals, considering twinning and absence of

twinning, the minimum number was 1600 orientations. This compaction method will increase the

computational speed of microstructure sensitive forming simulations by several orders of magnitude,

contributing to the computational feasibility of microstructure informed design.



2

Contents

1. Abstract 1

List of Figures 2

2. Introduction and Background 3

3. Methodology 4

3.1. Framework of Data Compaction 4

3.2. Binning of the Euler Space 5

3.3. Improving Binning of the Euler Space 6

3.4. Fitting Algorithm 7

3.5. Pole Figures 9

3.6. Stress-Strain Response 9

3.7. Texture Difference 10

4. Results 10

4.1. Initial Texture Comparisons 11

4.2. Stress-Strain Response 12

4.3. Post-deformation Texture Difference 13

5. Conclusions 15

6. Acknowledgements 15

7. References 15

List of Figures

1 The framework for Microstructure Sensitive Design for Performance Optimization [9] 3

2 The microstructure hull, with two different textures 4

3 Transformation from the Euler space to the Fourier space [9] 5

4 Fitting within the texture hull, for cubic and hexagonal metals, using two different

algorithms. 9

5 Pole figures for Aluminum, using the greedy algorithm and MATLAB’s linprog 9

6 Initial pole figures for 1) OFHC copper and 2) 6016 Aluminum 11

7 Initial pole figures for Zr 12

8 Stress-strain response for cubic metals under simple compression 12

9 Stress-strain response for Zr without twinning, under different load conditions 13

10 Stress-strain response for Zr with twinning, under different load conditions 13

11 TDI for cubic metals, post-deformation 14

12 TDI for Zr with and without twinning, post-deformation 14



3

2. Introduction and Background

The United States government launched the Materials Genome Initiative for Global Competi-

tiveness in June of 2011. This initiative is described as “a unique opportunity for the United States

to discover, develop, manufacture, and deploy advanced materials at least twice as fast as possi-

ble today, at a fraction of the cost.” [4] This project will advance the development and property

optimization of metals, which will contribute towards this initiative as a new computational tool.

Currently, the development of new materials is constrained by the microstructure-property link-

age. Knowing the microstructure, the material properties can be found, however, this relationship

cannot currently be effectively reversed.

Figure 1. The framework for Microstructure Sensitive Design for Performance
Optimization [9]

Historically, no research group has been able to do macro-scale metal-forming simulations in-

formed by the material microstructure because it is too computationally intensive. The resolution

of this problem is expedited by with two approaches, first, the development of faster algorithms

for solving the stiff and highly non-linear equations governing crystal plasticity, utilizing spectral

methods and GPU implementation for up to three order of magnitude increase in computational

speedup. Second, speedup can be achieved by reducing the size of the data sets of crystal orienta-

tions, which is described in this report. The approach of compact microstructure representation has

immediate gains in computational speed and will advent a design process known as “Microstruc-

ture Sensitive Design for performance optimization” (MSD) [1] , shown in Figure 1, finding hybrid

forming and processing operations to achieve material microstructures necessary to obtain desired

material properties.

The framework of this compaction method relies on the expression of the statistical distribution of

the material microstructure, known as the orientation distribution function (ODF) [12], as a Fourier

series using general spherical harmonics (GSH). The expression of the ODF as a series of Legendre

polynomials was developed by H.J. Bunge in 1965 [10]. Theoretically, a material texture can be

exactly described as an infinite series of Fourier coefficients, which is the average of the coefficients

of each crystal in the polycrystal, which is the statistical collection of all the data points. The
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microstructure hull, is the collection of coefficients for each possible material orientation. Though

the hull is theoretically in infinite-dimension space, the space can be visualized for the first three

Fourier coefficients, shown in Figure 2.

Figure 2. The microstructure hull, with two different textures

The importance of this series representation is that the linear structure of the basis can be

exploited to construct a linear combination of a compact set of representative orientations to model

the experimental microstructure. Crystal plasticity solutions scale linearly between computation

time and data set size, so minimizing the data set is a high priority.

3. Methodology

The methodology for data compaction of the statistical material microstructure data was to

transform the crystal orientations of the experimental texture and a smaller, judiciously chosen

microstructure data set into the Fourier space as coefficients of a series of Legendre polynomials in

general spherical harmonics [10], represented by Tµνl (g), shown in Figure 3.

3.1. Framework of Data Compaction. To transform each orientation into the Fourier basis,

the series definition of the ODF, defined as

f(g) =

∞∑
l=0

M(l)∑
µ=1

N(l)∑
ν=1

Fµνl Tµνl (g) (1)

is used, where Fµνl is the set of coefficients and Tµνl (g) is the series of Legendre polynomials.

M(l) depends on the crystal symmetry and N(l) depends on the sample symmetry. The base
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(a) The Euler basis
(b) Euler angle transformed
into Fourier basis

Figure 3. Transformation from the Euler space to the Fourier space [9]

functions Tµνl (g) are represented in Euler space as the more specific function, Tµνl (ϕ1, Φ, ϕ2), and

are orthogonal functions. [10]

The base functions can be expressed as the following:

Tµνl (θ, ϕ) = eiµϕ1Pµνl (cos Φ)eiνϕ2 (2)

where Pµνl is the associated Legendre polynomial [10].

This research is proving the validity of using the series expression of the ODF for data compaction.

Three methods of quantification of accuracy of this method are comparing the initial textures,

accuracy of the stress-strain response, and comparing the material textures after deformation.

It was proven in previous work [2] that spectral representation of the ODF linearizes the Euler

angles that represent the microstructure. This allows the actual material microstructure to be

modeled with a significantly smaller set of weighted representative microstructure orientations of

equal probability within the Euler Space.

3.2. Binning of the Euler Space. The Euler space, a basis representing each physically attain-

able material orientation, is expressed as (ϕ1, Φ, ϕ2), and can be robustly discretized with the

constraint that each bin has equal probability. The equation for the probability (dg) of each bin is

[12]

dg = sin(Φ)dϕ1dΦdφ2 (3)

and the discrete form of this equation is

dg = sin(Φ)∆ϕ1∆Φ∆φ2 (4)

where the coarseness of the mesh is determined by the spacing of each angle. The sin(Φ) term

accounts for the non-linearity of the Euler space when calculating the probability of each bin. The

compact, representative ODF to be found in this study is the binning with the minimum number

of orientations, is able to match the original material texture with an acceptable level of accuracy.
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The binning is different with different crystal symmetries, because the bounds of the Euler space

change due to redundancies present in the crystal symmetry. The bounds of the Euler space for

orientations with cubic symmetry are(
(ϕ1, Φ, ϕ2)

∣∣∣∣ 0 ≤ ϕ1 < 2π, arccos

(
cosϕ2√

1 + cos2 ϕ2

)
≤ Φ ≤ π

2
, 0 ≤ ϕ2 ≤

π

4

)
(5)

where the ϕ2 dependency of ϕ1 is due to the redundancy of the cubic symmetry [12]. For

orientations with hexagonal symmetry, the bounds of the Euler space are(
(ϕ1, Φ, ϕ2)

∣∣∣∣ 0 ≤ ϕ1 < 2π, 0 ≤ Φ <
π

2
, 0 ≤ ϕ2 <

π

3

)
(6)

Bounds on the Euler space effectively represent the physically realizable orientations for a given

material symmetry, and allow a representation without redundancies to be constructed. The Euler

space with the bounds for a particular symmetry, is known as the fundamental zone, or FZ.

Since each point in the discretized Euler space is mapped to the Fourier basis, the most effective

binning will be able to match any texture within the microstructure hull shown in Figure 2 for the

number of coefficients that provide sufficient accuracy, for the minimum data set size. A binning

that transforms to the vertices of the microstructure hull is the most effective.

3.3. Improving Binning of the Euler Space. Using the basic theory behind the Nyquist sam-

pling theorem, we changed the discretization of each angle of the Euler space to accurately and

robustly represent every point within the microstructure hull to a maximum number of dimen-

sions. We assume that though the Euler angles are dependent rotations, they may be treated

independently in Euler space.

Euler Angle Corresponding Index

ϕ1 n (ν)

Φ l

ϕ2 m (µ)

Table 1. Correspondence between Euler Space and GSH Functions

For hexagonal symmetry, optimum binning was determined to be to discretize ϕ1 4N times, Phi

4N times, and ϕ2 N times, where N = 2 . . .∞. For cubic symmetry, only a weak dependence on

discretization choice was observed, so the discretization was ϕ1 8(N − 1) + 1 times, Φ (N − 1) + 1

times, and ϕ2 (N −1) + 1 times, where N = 2 . . .∞, because of the fairly even angle discretization.

N indicates the fineness of the mesh desired.

Improving the binning resulted in more coefficients being fit with smaller data sets. This signifi-

cantly impacted the compaction of the data; without changing the discretization, 16393 orientations

fit 27 unique, non-zero dimensions, and after improving the discretization, 1600 orientations can fit

101 unique dimensions in the Fourier space. The speed also improved considerably using linprog ;
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the greedy algorithm fit 27 dimensions with 1.8 million iterations, taking about 30 minutes, whereas

linprog fit 245 dimensions with 50 iterations, taking approximately 45 seconds on a standard CPU.

3.4. Fitting Algorithm. When a statistical material texture is described in the Fourier space, it

is represented as the average of the Fourier coefficients for each orientations in a polycrystal. Each

orientation of a carefully selected representative texture, using the binning scheme described, can

also be transformed into the Fourier space. To find the distribution associated with the representa-

tive texture, the following constrained linear system needs to be solved. The elegance of the series

representation of the statistically described microstructure is that by transforming the ODF into

Fourier space, the linear properties of the basis are exploited.

The equations and constraints to find the statistical distribution of orientations for a represen-

tative texture in Fourier space are the following:

Fij~αi = ~C∗j (7)

αi ≥ 0 (8)

αi ≤ 1 (9)

Ncrys∑
i=1

αi = 1 (10)

F is the matrix of coefficients for each representative orientation, of size (Ncrystals×Ndimensions),

and where αi is the volume fraction of each individual orientation. C∗ is the vector of average

Fourier coefficients of the objective texture to be fitted. αi is limited in value between 0 and 1

because it is non-physical to have a negative or greater than unity volume fraction.

As the number of coefficients fitted in this framework approaches infinity, the representative

texture being fitted will become identical to the target ODF.

3.4.1. Greedy Algorithm. The original fitting algorithm was a dynamic programming scheme that

obtains a linear combination of these representative orientations matching the actual average vector

in Fourier space, using the following equation to optimize the weight of an additional crystal to the

existing average at each iteration. The equation is 1

α =
∑
l,µ,ν

(
C∗µνl −A∗µνl

) (
Fµνl −A

∗µν
l

)(
Fµνl −A

∗µν
l

)2 (11)

and once a new Fµνl is found that has a linear combination that is closest to C∗, the new average

is given by

A∗new = α
(
A∗µνl

)
+ (1− α)Fµνl (12)

The limitations of using this algorithm is that when fitting textures close to the surface of the

texture hull, this method is quite inefficient.

1Where l, µ, and ν are the indices of the specialized functions, C∗ is the average experimental Fourier coefficient, A∗

is the current average Fourier coefficient, and Fµ νl
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3.4.2. MATLAB: Linear Programming. For a more sophisticated solution method, MATLAB’s

linprog function was used. This MATLAB function is based on the interior point method, and the

system of equations is modified to accommodate this solver.

The modified system of equations is the following:

Equality Constraints

Fij~αi − ~C∗j − ~t1,j + ~t2,j = 0 (13)

Ncrys∑
i=1

αi = 1 (14)

Inequality Constraints

Lower Bound: αi ≥ 0 (15)

t1, t2 ≥ 0 (16)

Upper Bound: αi ≤ 1 (17)

Minimize the following equation:

Ndim∑
i=1

(t1,i + t2,i) (18)

In this formulation, ~t1 and ~t2 are slack variables. The slack variables are utilized because they

allow the linear system to become an equality constraint. These slack variables are bounded so

that they cannot stay “hidden” when minimizing their sum. They are always positive, guaranteed

by the bounds, however, in the equality constraint, the addition and subtraction means that there

is more flexibility when arriving at a solution. In MATLAB, the αi, and the slack variables are all

components in a solution vector g.

To express this in a form for use in MATLAB, the equality equations become the following:

 (FT
)
Ndim×Ncrys

(I)Ndim×Ndim −(I)Ndim×Ndim

(1)1×Ncrys (0)1×Ndim (0)1×Ndim




~αi

~t1

~t2

 =

 (C∗)Ndim×1

1

 (19)

This solution method is only feasible when point to be fitted is within the microstructure hull,

because interior point algorithms assume that the solution will be located in a feasible region with

the given constraints. If the point lies outside this region, interior point methods heavily penalize

the function to be optimized.

This algorithm converges much more rapidly, as shown in Figure 4. The convergence of the

primal and dual problems is robust and for this research, we assumed that a robust solution was

present when the distance between the primal and dual was less than 1× 10−8.

To improve the smoothness of the ODF, when possible, we constrained the maximum volume

fraction of a crystal orientation to be less than 10
Ncrystals

, to prevent any tendency of the ODF to a

single crystal.
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(a) Hull with cubic symmetry, fitted to l=12 (b) Hull with hexagonal symmetry, fitted to l=6

Figure 4. Fitting within the texture hull, for cubic and hexagonal metals, using
two different algorithms.

The improved fitting also improves the accuracy of the representative ODF, shown in Figure 5.
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(c) linprog

Figure 5. Pole figures for Aluminum, using the greedy algorithm and MATLAB’s
linprog

3.5. Pole Figures. Pole figures are a visual representation of the statistical distribution of material

orientations [12]. If two textures both have the same pole figure representation, they will be identical

textures. In this research, the MTEX package for MATLAB was used to generate the pole figures,

because of its advanced smoothing options. The Bunge-Euler angle convention was used when

describing the statistical material microstructure.

3.6. Stress-Strain Response. The stress-strain response was generated at a single integration

point of the material, assuming a statistical polycrystal. The Visco-Plastic Self-Consistent (VPSC)

code, version 7c, was used when calculating the plastic material response. This code was developed
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by C.N. Tomé and R.A. Lebensohn at Los Alamos National Laboratory to generate microstructure

sensitive stress-strain response and texture evolution using crystal plasticity constitutive laws. It

accounts for slip and twinning deformation mechanisms, and hardening, reorientation and shape

change of individual grains [11].

The goal of this project was not to improve the accuracy of microstructure sensitive simulations,

but to prove that a compact representative microstructure behaves very similarly to a much larger

original data set. Therefore, our goal is consistency, not accuracy, because the conclusions of this

research will provide a useful tool for improving the modeling of these simulations.

3.7. Texture Difference. For the use of this research, we created a mathematical tool for defining

the differences in texture called the texture difference index (TDI). It is defined in the Fourier space

as the distance between the original microstructure’s average Fourier coefficients, known as C∗, and

the representative texture’s average Fourier coefficients, all normalized by the maximum distance

from the original microstructure’s texture within the texture hull. The equation is given as

TDI =

√ ∫
FZ

(
f∗(g)− f̄(g)

)2
dg√ ∫

FZ

(
f∗(g)− f̃(g)

)2
dg

=

√∑
l,µ,ν

(
F ∗

µν

l − F̄µνl
)2

√∑
l,µ,ν

(
F ∗

µν

l − F̃µνl
)2 (20)

where the F ∗
µν

l coefficients correspond to the original texture, the F̄µνl coefficients correspond to

the compact, representative texture, and the F̃µνl coefficients correspond to a single crystal that is

farthest away from the target texture. 2

Using this definition, an identical texture has a TDI of 0, and the texture with the greatest mis-

orientation has a TDI of 1. The number of dimensions to which this texture difference is computed

is the maximum number of dimensions to which a representative texture has been computed. For

cubic metals, we chose l = 16 and for hexagonal metals, we chose l = 20.

4. Results

Implementing the theory described in the section on methodology, we validated this data com-

paction framework with three methods described in the previous section. First, the initial represen-

tative ODFs are compared with the experimental ODFs to evaluate the effectiveness of generating

an initial texture using the GSH series approach to ODF representation. Secondly, the generated

textures were used in simulations of different loading conditions, to evaluate whether the smaller,

representative texture could accurately model the response of the polycrystal, with different de-

formation mechanisms, such as crystal slip and twinning. Lastly, the difference in texture was

measure after deformation to examine whether the smaller data set was able to capture the texture

evolution occurring due to crystal plasticity.

2In this formulation,
∫
FZ

f∗(g)dg =
∫
FZ

f̃(g)dg =
∫
FZ

f̄(g)dg = 1 which represents the probability, or volume fraction

[12]
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4.1. Initial Texture Comparisons. The initial textures fitted had cubic and hexagonal symme-

tries, to broaden the impacts of this research for application to a diverse set of materials. The pole

figures were compared to see if the representative textures captured the statistical distribution of

material orientations.

For cubic metals, the initial pole figures are shown in Figure 6.
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(a) Original Texture
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(d) 825 orientations

Figure 6. Initial pole figures for 1) OFHC copper and 2) 6016 Aluminum

From this figure, it is evident that an ODF with 825 orientations seems to be of acceptable

accuracy for texture representation.
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For the hexagonal texture, the representative orientations required were higher than that of cubic

metals. The zirconium texture also had very dominant features in the pole figures, making it more

difficult to fit.
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Figure 7. Initial pole figures for Zr

From the pole figures, the texture is effectively matched even down to 432 orientations. Thus, the

minimum data set size should be determined by simulating the stress-strain response and measuring

the texture difference post-deformation.

4.2. Stress-Strain Response. Since cubic metals deform almost exclusively by slip, fewer defor-

mation paths were considered for cubic metals; simple compression and rolling. Shown in Figure

8, the stress-strain response was virtually indistinguishable from the measured texture.
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Figure 8. Stress-strain response for cubic metals under simple compression
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The conclusion for cubic metals was that crystalline slip is modeled well with much smaller

microstructure data sets. This left the determination of the smallest data set to be based on the

difference in texture post-deformation.

Hexagonal metals have a multi-mode deformation mechanism, based on slip and twinning. To

verify that the data compaction framework was valid for hexagonal with simple slip, the stress-strain

response was simulated at a temperature of 450K, to remove the effect of twinning.
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Measured stress−strain response
Simulated with 1024 weigh. orient.

Simulated with 1600 weigh. orient.
Simulated with measured texture

(c) TTC - 450K

Figure 9. Stress-strain response for Zr without twinning, under different load conditions

From Figure 9, it is clear that smaller data sets still provide an accurate representation of plastic

material response. The most stress-strain variance was evident in the TTC curve.

After validating that the framework was symmetry independent, we validated it for the twinning

phenomenon. Zr exhibits twinning behavior at lower temperatures, so we used a temperature of

76K in the stress-strain simulation.
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Measured stress−strain response
Simulated with 1024 weigh. orient.

Simulated with 1600 weigh. orient.
Simulated with measured texture

(c) TTC - 76K

Figure 10. Stress-strain response for Zr with twinning, under different load conditions

Again, the most difference in the stress-strain response was present in the TTC curve, however,

the maximum difference between the two curves was 4%. Twinning appears to require the most

crystalline orientations, however, if an error of 5% or less is acceptable, then much smaller data

sets can be achieved.

4.3. Post-deformation Texture Difference. The texture difference post-deformation is impor-

tant because the crystal microstructure determines the material properties which evolve through

forming processes. From the following figures, the texture difference saturated in value after a
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certain number of crystals was attained in the ODF. This was helpful in determining the number

of crystals used in the representative ODF.

The cubic metals were very dependent on the material used. The OFHC copper was more of

a random texture, so it was more easily represented, whereas the 6016 aluminum was strongly

anisotropic, which was harder to model.
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Figure 11. TDI for cubic metals, post-deformation

From Figure 11, the copper TDI saturates quickly, but the aluminum stabilizes at about 2400

orientations, however, the difference is acceptable at 825 orientations.

The hexagonal metals appear to gain accuracy rapidly up to 1600 orientations, then start to

asymptotically approach a saturated value with larger data sets.
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Figure 12. TDI for Zr with and without twinning, post-deformation

From Figure 12, an effective representative ODF size for hexagonal metals appears to be 1600

orientations.
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5. Conclusions

This project accomplished two main goals; the development of an effective fitting algorithm to

generate compacted data sets and validation of the framework for data compaction on metals with

different material symmetries deforming under slip and twinning. The development of a fitting

algorithm by reformulating the problem as a constrained linear optimization and solving with the

interior point method has increased the computational speed of fitting a texture by approximately

500 times over the previous algorithm.

The minimum data set was determined to be 825 orientations for both copper and aluminum.

The texture differences in copper for this ODF size after deformation by simple compression and

rolling are both under 2%. For aluminum, the values are higher (5.9% and 12.6%, for simple

compression and rolling respectively). The stress-strain response in both aluminum and copper for

compacted data sets was nearly indistinguishable from the objective stress-strain curve.

Generating representative textures for hexagonal metals required more investigation of the dis-

cretization of the Euler space to fit more Fourier coefficients. Changing this discretization increased

the compactness by a factor of greater than 16. Hexagonal in general was more difficult to repre-

sent accurately, however, a minimum of 1600 orientations was validated for zirconium (Zr) with and

without twinning. The minimum ODF size was determined to be 1600 because post-deformation

texture difference approaches the saturated texture difference value with larger data sets. The

texture differences after deformation are reasonable - less than 6% for all modes of deformation.

The significance of this work cannot be underestimated. This compaction method can reduce

millions of material microstructure data points or more to 825 orientations for cubic metals and

1600 orientations for hexagonal metals, increasing computational speed potentially by several orders

of magnitude. This will contribute to the computational feasibility of microstructure-sensitive

forming simulations, which are necessary for microstructure informed design. This data compaction

framework will enable microstructure informed design, which will contribute to a genesis in new

material development.
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